

PHASE II ENVIRONMENTAL SITE ASSESSMENT (ESA) REPORT 52-54 Canal Street

Lyons, New York

Prepared for: WAYNE COUNTY REGIONAL LAND BANK, NEW YORK

Prepared by: MONTROSE ENGINEERING & GEOLOGY, P.C.

April 2025

100 S. Clinton Avenue, Suite 2330 Rochester, New York 14604 www.montrose-env.com

PHASE II ENVIRONMENTAL SITE ASSESSMENT (ESA) REPORT 52 54 CANAL STREET, LYONS, NEW YORK

EPA COOPERATIVE AGREEMENT NUMBER: BF-96219623

MONTROSE PROJECT NUMBER: 037112-3.C.01.A

Prepared for Wayne County Regional Land Bank, New York, April 2025

Kayla Bolin

Staff Geologist III

reviewed by

Ryan Malia Staff Geologist III

reviewed by Katie Nelson

Senior Environmental Scientist

TABLE OF CONTENTS

List (of Acrony	ms and Abbreviations					
Exec	utive Sur	mmary	i				
	Reco	mmendations	iii				
1	Intro	ductionduction	1-1				
	1.1	Site Location and Description	1-1				
	1.2	Site History	1-1				
	1.3	Previous Environmental Investigation	1-2				
		1.3.1 2002 Storage Tank Closure Program Site Assessment Report	1-2				
		1.3.2 2023 Phase I Environmental Site Assessment	1-2				
	1.4	Future Site Use	1-3				
2	Proje	ct Objectives and Scope of Work	2-4				
3	Field	Sampling Program	3-5				
	3.1	Preliminary Field Activities	3-5				
		3.1.1 Health and Safety	3-5				
		3.1.2 Utility Clearance	3-5				
		3.1.3 Standard Operating Procedures	3-5				
	3.2	Lift Systems Removal	3-5				
	3.3	Subsurface Assessment	3-6				
		3.3.1 Soil Sampling	3-6				
	3.4	Investigation Derived Waste (IDW)	3-7				
	3.5	Quality Assurance / Quality Control (QA/QC) Samples	3-7				
4	Field	Investigation Results	4-8				
	4.1	Geologic and Hydrogeologic Conditions	4-8				
	4.2	Soil Quality	4-8				
	4.3	Data Validation Results					
5	Data	Gaps	5-9				
6	Updated Conceptual Site Model						
	6.1	Contaminants of Concern					
	6.2	Site Geology and Hydrogeology	6-10				
	6.3	Contaminant Fate and Transport 6-					
	6.4	6.4 Potential Receptors and Exposure Pathways					
7	Conc	lusion and Recommendations	7-12				
	Reco	mmendations	7-12				

i

FIGURES

Figure 1 Site Location Map

Figure 2 Site and Surrounding Properties

Figure 3 Investigation Locations

TABLES

Table 1 Soil Analytical ResultsTable 2 Equipment Blank Results

APPENDICES

ii

Appendix A - Regulated Building Material Survey

Appendix B - Disposal, Importation, and Utility Clearing Documentation

Appendix C - Photo Log

Appendix D - Laboratory Analytical Reports

Appendix E - Data Validation Summary Report

LIST OF ACRONYMS AND ABBREVIATIONS

ACM Asbestos Containing Material
COC Contaminants of Concern
CP Commissioner Policy
CSM Conceptual Site Model

CU Commercial Use

C&D Construction and Demolition
ESA Environmental Site Assessment
ft bgs feet below ground surface
HASP Health and Safety Plan
IDW Investigation Derived Waste

LBP Lead Based Paint

min. minute mL. milliliter

NYSDEC New York State Department of Conservation

QAPP Quality Assurance Project Plan RBM Regulated Building Materials

REC Recognized Environmental Conditions
PAH Polycyclic Aromatic Hydrocarbon

PBS Petroleum Bulk Storage
PCB Polychlorinated Biphenyls
POGW Protection of Groundwater

ppm parts per million

QA/QC Quality Assurance / Quality Control
QAPP Quality Assurance Project Plan

QAPP-A Quality Assurance Project Plan Addenda

SCO Soil Cleanup Objectives SMP Soil Management Plan

SOP Standard Operating Procedure

sq. ft. square foot

SGV Standards & Guidance Values

TOC Top of Casing

TOGS Technical and Operational Guidance Series 1.1.1
U.S. EPA United States Environmental Protection Agency

i

UST Underground Storage Tank

UU Unrestricted Use

VOA Volatile Organic Analysis
VOC Volatile Organic Compound

EXECUTIVE SUMMARY

On behalf of Wayne County Regional Land Bank (the Land Bank), New York Montrose Engineering & Geology, D.P.C. (Montrose) has prepared this Phase II Environmental Site Assessment (ESA) report for the Site located at 52-54 Canal Street, Lyons, New York (the "Site"). The Land Bank received a United Stated Environmental Protection Agency (US EPA) Brownfields Multi-Purpose Grant (Cooperative Agreement No. BF-96219623) to complete environmental assessments and cleanups including the completion of Phase II ESAs. The work was completed in accordance with the Generic Quality Assurance and Protection Plan (QAPP) which was prepared by Montrose and approved by US EPA for review on June 17, 2024. The Site-Specific Quality Assurance Project Plan Addenda (SQA) approved by the US EPA on October 15, 2024.

The Site is situated on a 0.12± acre parcel (Parcel ID No 71111-09-155664) located in the Town of Lyons (**Figure 1**) and is currently owned by the Land Bank. The Site is currently unoccupied. The building is improved with an approximate 1,346± square foot one story former gasoline service station and auto service garage (**Figure 2**). The Site has been unoccupied for some time with use for storage by the former owner, the Wayne County Historical Society, in the office portion of the structure. The remainder of the Site is a paved/gravel parking area currently overgrown with vegetation and a lawn area on the north side of the building.

The Land Bank intends to renovate the structure. The Site is one of several contiguous parcels the Land Bank planning to revitalize as part of the Central Business District redevelopment plan. Once complete, the district will include a mix of commercial space and affordable multi-family housing developments. 52-54 Canal Street is anticipated to be a commercial property in this district.

The scope of work for this Phase II ESA was designed to assess data gaps identified in prior reports/during prior site visits:

<u>Data Gap #1 – Interior of Garage Bay Structure</u>: The Site was historically operated as an auto service station and gasoline service station. During a site visit conducted by Montrose two different types of underground hydraulic lift systems at the Site. The first lift system contains a hydraulic fluid reservoir within the cylinder. The second lift system consists of a cylinder with a detached underground oil tank. No above grade equipment was observed. Given the dates of operation as an automobile repair garage (1945-1999) there was potential that the lift's hydraulic oil contained PCBs.

 <u>Strategy:</u> Cut the concrete floor and remove lift systems to assess potential presence of hydraulic oil and soil conditions surrounding the lifts.

<u>Data Gap #2 – Regulated Building Materials:</u> Given the dates of construction for the subject building (1945) there is potential that the building contains regulated building materials (RBM) including asbestos, lead-based paint and PCB containing building materials.

ii

• <u>Strategy:</u> Conduct a RBM survey to assess the potential presence of asbestos, lead-based paint and PCB containing building materials.

The investigation conducted included Site utility clearance and structural evaluation. The two hydraulic lifts and underground storage tanks were excavated using a small hydraulic excavator. Additionally, a RBM survey was conducted simultaneously by Lu Engineers. The RBM survey report is provided in **Appendix A.**

The conclusions and recommendations of the assessment are summarized below.

Lift Removal Observations

Two (2) lift systems, referred to as the northern lift and southern lift, were removed. The lifts both measured 7.5 feet and contained a mixture of hydraulic oil and water. One (1) hydraulic oil tank connected to the southern lift, with approximately 50 gallons of capacity, was in good condition and removed with this event. The tank was found to be primarily filled with hydraulic oil. Both lifts were found to be situated in sand fill and in good condition. There were no indications (odor, elevated PID readings, staining) of impacts in adjacent soils. The excavations reached a depth of 8 feet below ground surface (ft bgs) and were subsequently backfilled with excavated soil and imported crusher run #1.

Soil Quality

Three (3) soil samples were collected from each excavation for a total of six (6) samples. Visual/olfactory indications of impacts to soil were not observed by Montrose, and elevated photoionization detector (PID) readings above background were not registered during field screening of the soil samples. Some anthropogenic fill components (brick, ash, cinders) were observed during this lift removal.

Soil samples were collected and analyzed for volatile organic compound (VOC) analysis (by EPA method 8260), semi-volatile organic compound (SVOC) analysis (by EPA method 8270), and PCB analysis (by EPA method 8082). Analytical results found no detections above unrestricted use soil cleanup objectives.

Recommendations

Based on the results of the Phase II ESA as described herein, Montrose recommends the following:

- 1. No further investigation or remediation is recommended at this time.
- 2. Given the observation of anthropogenic fill, during future ground intrusive work it is recommended that soils be managed in accordance with 6 New York Codes, Rules and Regulations (NYCRR) Part 360.

iii

1 INTRODUCTION

On behalf of Wayne County Regional Land Bank (the "Land Bank" or the "Client") Montrose Engineering & Geology, P.C. (Montrose) has completed a Phase II Environmental Site Assessment (ESA) at 52-54 Canal Street, Lyons, New York (the "Site"). The Land Bank received a United Stated Environmental Protection Agency (US EPA) Brownfields Multi-Purpose Grant (Cooperative Agreement No. BF-96219623) to complete environmental assessments and cleanups including the completion of Phase II ESAs. The work was completed in accordance with the Generic Quality Assurance and Protection Plan (QAPP) which was prepared by Montrose and approved by US EPA for review on June 17, 2024, the QAPP-A RBM Scope of Work approved by the U.S. EPA on October 2, 2024, and the Site-Specific Quality Assurance Project Plan Addendum (SQA) approved by the U.S. EPA on October 15, 2024.

1.1 Site Location and Description

The Site is situated on a 0.12± acre parcel (Parcel ID No 71111-09-155664) located in the Town of Lyons (**Figure 1**) and is currently owned by the Land Bank. The Site is currently unoccupied. The building is improved with an approximate 1,346± square foot one story former gasoline service station and auto service garage (**Figure 2**). The Site has been unoccupied for some time with frequent use for storage by the former owner, the Wayne County Historical Society, in the office portion of the structure. The remainder of the Site is a paved/gravel parking area currently overgrown with vegetation and a lawn area on the north side of the building.

The Site is located in a mixed commercial and residential area. The Site, to the north is bordered by Canal Street, to the west by Geneva Street, to the south by Clyde Road, and to the East by a vacant commercial building.

1.2 Site History

According to the historical records reviewed, prior to the construction of the current subject building the Site contained a row style building with a hardware store from approximately 1884 to 1917. The existing structure on the Site appears to have been constructed in 1945. The Site was utilized as a gas station and possible residence from approximately 1945 to 1999. According to historical Sanborn maps there were three gasoline tanks depicted in 1949.

A storage tank closure report for the Site indicates that six underground storage tanks (USTs) were previously located on-Site and included:

- One 8,000-gallon gasoline tank closed and removed in 1999;
- Three 6,000-gallon gasoline tanks closed and removed in 1999;
- One 4,000-gallon diesel tank closed in place in 1999; and
- One 500-gallon waste oil tank was closed and removed in 1999.

Based on available regulator records spill no. 9905871 occurred when impacts from tank piping was found during the tank removals in 1999. Approximately 46 tons of impacted soil was removed. Following the receipt of confirmatory sample results no further action was required by New York State Department of Environmental Conservation (NYSDEC).

Operations on the Site since gas station operations ceased but a residence may have been located on-Site since that time (could not be confirmed). The Site is currently owned by the Land Bank and is vacant. During a site visit conducted by Montrose two different types of underground hydraulic lift systems at the Site. The first lift system contains a hydraulic fluid reservoir within the cylinder. The second lift system consists of a cylinder with a detached underground oil tank. No above grade equipment was observed.

1.3 Previous Environmental Investigation

1.3.1 2002 Storage Tank Closure Program Site Assessment Report

Plumley Engineering, P.C. prepared a report entitled Storage Tank Closure Program Site Assessment Report for Gilder Oil Company, Inc. Jim's Service Station located at 52 Canal Street in the Village of Lyons, NY dated July 2002. The report documents to closure of the following USTs:

- One 8,000-gallon gasoline tank closed and removed in 1999;
- Three 6,000-gallon gasoline tanks closed and removed in 1999;
- One 4,000-gallon diesel tank closed in place in 1999 by cleaning and filling with a concrete slurry;
 and
- One 500-gallon waste oil tank was closed and removed in 1999.

Confirmatory samples from the tank excavations were below applicable standards. One sample collected below the former dispenser had several volatile organic compounds (VOCs) above standards. Spill number 9905871 was open as a result of these impacts. In 2002 additional soil was removed from where the dispenser had been previously located and the confirmatory sample was below standards. The spill file was subsequently closed and NYSDEC did not require further action.

1.3.2 2023 Phase I Environmental Site Assessment

LiRo Engineers performed a Phase I Environmental Site Assessment (ESA) for the Site in 2023. The following Recognized Environmental Conditions (RECs) and Historical Recognized Environmental Conditions (HRECs) were identified in the report:

<u>REC 1 — Historical Use:</u> This parcel and current on-site structure were formerly operated as a gasoline service station and auto service garage. During the site visit of the 2023 Phase I ESA, it was documented a vehicle lift remains in the garage portion of the subject building. Entrance to the interior of the site was not permitted, the vehicle lift is believed to contain hydraulic oil containing PCBs.

HREC 1 — Historical Use: This parcel and current on-site building were formerly operated as a gasoline service station approximately between 1945 and 1999. This site according to the historical Sanborn maps reviewed, had three gas tanks located on-site during this time period. The site was also identified on the UST finder and New York Spills (NY Spills) database for having four underground storage tanks on-site. One 8,000-gallon, two 6,000-gallon, and one 4,000-gallon USTs were identified to be located on-site. The tanks were installed in 1984 and removed in 1999. Upon removal, contaminated soil was encountered, prompting a New York State Department of Environmental Conservation (NYSDEC) spill record. Contaminated soil was piled on-site and soil was disposed at Seneca Meadows an appropriately permitted local landfill.

The following Business Environmental Risk (BER) was also identified in the Phase I ESA report:

• The existing structure on the site was constructed in 1945. Given the age of the building it is anticipated that regulated building materials (such as asbestos containing building materials (ACBMs), lead based paint (LBP), PCB containing building components, etc.) are likely present. During the site visit interior access to the site was not permitted which prevented an assessment of the presence and condition of regulated building materials. If present, such materials represent a BER for the site.

1.4 Future Site Use

The Land Bank intends to renovate the structure. The Site is one of several contiguous parcels the Land Bank is looking to revitalize as part of the Central Business District redevelopment plan. Once complete, the district will include a mix of commercial space and affordable multi-family housing developments. 52-54 Canal Street is anticipated to be a commercial property in this district.

2 PROJECT OBJECTIVES AND SCOPE OF WORK

The objective of the Phase II ESA was to investigate the RECs identified in Montrose's review of prior reports summarized above in **Section 1.3**. The scope of work below was designed to address the following data gaps:

- Data Gap #1 Interior of Garage Bay Structure: The Site was historically operated as an auto service station and gasoline service station. During a site visit conducted by Montrose two different types of underground hydraulic lift systems at the Site. The first lift system contains a hydraulic fluid reservoir within the cylinder. The second lift system consists of a cylinder with a detached underground oil tank. No above grade equipment was observed. Given the dates of operation as an automobile repair garage (1945-1999) there is potential that the lift's hydraulic oil contained PCBs.
 - <u>Strategy:</u> Cut the concrete floor and remove lift systems to assess potential presence of hydraulic oil and soil conditions surrounding the lifts.
- <u>Data Gap #2 Regulated Building Materials:</u> Given the dates of construction for the subject building (1945) there is potential that the building contains regulated building materials including asbestos, lead-based paint and PCB containing building materials.
 - o <u>Strategy:</u> A RBM survey to assess the potential presence of asbestos, lead-based paint and PCB containing building materials.

The complete RBM survey including sample location and methodologies is included as **Appendix A**. The remainder of this report focuses on Data Gap #1.

There were no deviations in the scope of work that was presented in the approved SQA.

3 FIELD SAMPLING PROGRAM

3.1 Preliminary Field Activities

3.1.1 Health and Safety

A site-specific health and safety plan (HASP) was prepared prior to mobilization and included a description of field sampling activity safety protocols for Montrose employees engaged in the project. At the start of each day of field activities, a safety meeting was held, and safety protocols were reviewed.

3.1.2 Utility Clearance

Prior to conducting fieldwork, Dig Safe was contacted by Sessler Environmental Services (Sessler) to mark the location of underground utilities for the subject property (**Appendix B**).

3.1.3 Standard Operating Procedures

The following Field Activities Standard Operating Procedures (SOPs) provided in the QAPP were followed.

- SOP 001: Field Documentation Procedures, March 31, 23, Revision No. 2
- SOP 002: Field Screening and Instrumentation Procedures, January 30, 2019, Revision No. 2
- SOP 003: Utility Clearance, April 29, 2021, Revision No. 2
- SOP 004: Surficial and Subsurface Soil Sampling, April 28, 2023, Revision No. 2
- SOP 015: Field Quality Control Sampling, May 5, 2021, Revision No. 2
- SOP 016: Sample Labeling, Packaging, and Shipping, May 5, 2021, Revision No. 2
- SOP 017: Decontamination of Field Equipment, April 29, 2021, Revision No. 2
- SOP 018: Management of Investigation Derived Waste, April 30, 2021, Revision No. 2

3.2 Lift Systems Removal

Prior to removal a technician decommissioned and disengaged the hydraulic systems of both the north and south lifts. Removal of both lift systems was completed on December 27 and December 30, 2024. A photolog is provided in **Appendix C**. The following steps for removal of the lift systems were followed:

- 1. Hydraulic oil/water was removed from both lifts through the top of the hydraulic piston and/or the hydraulic oil piping by use of a drum vacuum. Approximately 40 gallons total of hydraulic oil and water mixture was removed through this method.
- 2. Concrete around the lifts and associated tank were cut using a concrete saw and removed using a skid steer mounted hydraulic breaker and hydraulic excavator. Removed concrete was placed on polyethylene sheeting for inspection of potential impacts, before being loaded into a roll off dumpster for disposal as construction and demolition (C&D) waste.
- 3. The soil surrounding the north lift was excavated using a small hydraulic excavator. Soils removed were staged on polyethylene sheeting, separately from the concrete for visual inspection and

screened using a photoionization detector (PID) equipped with a 10.6 electron-volt lamp. Soil impacts (i.e. odor, staining, elevated PID readings) were not observed.

- 4. The north hydraulic lift was found to be in soil (imported sand) and measured approximately 7.5 feet in length. Lift removal was completed by use of the excavator and staged on polyethylene sheeting. Following lift removal, the excavation was inspected, and samples were collected per the SQA. No odors, staining or elevated PID readings were observed. Excavation dimensions were 7 feet length by 4 feet width by 8 feet depth. The excavation area was backfilled with excavated soil and lightly compacted.
- 5. The south lift and attached underground hydraulic oil tank were removed by the same method as the north lift. Tank capacity was estimated to be 50 gallons. Final south lift excavation dimensions were 5.5 feet length by 5 feet width by 8 feet depth. Anthropogenic fill components (ash/cinders) were observed at the bottom of the south lift excavation. No odors, staining or elevated PID readings were observed.
- 6. An additional 15 gallons of hydraulic oil was removed from the underground hydraulic oil tank. A total of 55 gallons of hydraulic oil and water was removed from the two lifts.
- 7. The two underground hydraulic lift systems were inspected for additional oil and taken off-Site by Sessler. Disposal documentation is included in **Appendix B**.
- 8. The south excavation was backfilled with excavated soil and lightly compacted. Both excavations were then backfilled to ground surface with imported crusher run #1 from Smith's gravel pit located in Sodus Center, NY (Appendix B).

3.3 Subsurface Assessment

3.3.1 Soil Sampling

On December 27, 2024, three soil samples were collected by excavator bucket from the excavation of the northern lift. One (1) sample was collected from the north sidewall, one (1) sample was collected from the bottom of the excavation. On December 30, 2024, three soil were collected by excavator bucket from the southern lift. One (1) sample was collected from the north sidewall, one (1) sample was collected from the south sidewall, and one (1) sample was collected from the bottom of the excavation. Sample locations are depicted on **Figure 3**.

The collected soil samples were screened for visual/olfactory characteristics and for VOCs using a PID equipped with a 10.6 eV lamp. No distinctive visual characteristics or odors were observed for each sample. The two (2) excavations were backfilled with excavated soil (which did not have obvious indicated of impacts) and topped with three (3) cubic yards (approximately 4 tons) of imported crusher run stone from Smith's Gravel Pit located in Sodus Center, New York (receipt included in **Appendix B**).

The following soil samples were submitted for laboratory analyses by Pace of Westborough, Massachusetts:

- Three samples were collected from the excavation of the northern lift (EB-01, ESW-01, ESW-02). One (1) sample from the bottom of excavation pit, (EB-01 collected at 8 ft bgs). One (1) sample collected from the north side wall (ESW-01 at 7 ft bgs). One (1) sample from the south sidewall (ESW-02 at 7 ft bgs).
- Three samples were collected from the excavation of the southern lift (EB-02, ESW-03, ESW-04). One (1) sample from the bottom of exaction pit (EB-02 collected at 7 ft bgs). One (1) sample collected from north sidewall of excavation pit (ESW-03 at 6 ft bgs). One (1) Sample from southern sidewall (ESW-04 at 6 ft bgs).

3.4 Investigation Derived Waste (IDW)

Due to no visual or olfactory impacts observed, excavated soils were reused as backfill for the two lift excavations. The concrete slab was cut and removed during the lift removal and showed no visual or olfactory impacts. The concrete was disposed of as construction and demolition material by Sessler (disposal documentation is provided in **Appendix B**).

Thirty-five (35) gallons of oil/water was extracted from the northern lift. Twenty (20) gallons of oil was extracted from in the hydraulic oil tank and the southern lift. Extracted oil and water removed from hydraulic lift and tank were drummed, stored securely on-Site and sampled for PCBs by Sessler on January 16, 2025. Analytical results for the extracted oil/water are included in **Appendix D**.

3.5 Quality Assurance / Quality Control (QA/QC) Samples

The following QA/QC samples were collected and analyzed to provide information on precision, accuracy, representativeness, comparability, and completeness of the data generated:

- One (1) matrix spike / matrix spike duplicate sample was collected from excavation bottom of northern lift EB-01 (8 ft bgs) and analyzed for VOCs, SVOCs, and PCBs.
- One (1) field duplicate soil sample was collected from bottom of excavation of northern lift EB-02 (8ft bgs).
- One (1) field duplicate soil sample was collected from bottom of excavation of southern lift EB-02 (8ft bgs).
- One (1) equipment blank sample was collected from the excavator bucket. (Table 2)

4 FIELD INVESTIGATION RESULTS

4.1 Geologic and Hydrogeologic Conditions

The lifts were found to be installed within imported sand with some anthropogenic fill components (including brick, ash, and cinders). At the bottom of each lift excavation soil was encountered consisting of lacustrine silt and clay with some sand and potential anthropogenic fill components. The water table was not encountered during the excavations.

4.2 Soil Quality

Analytical data is summarized on **Table 1** and is compared to the following applicable Soil Cleanup Objectives (SCOs); NYSDEC Part 375 SCOs for the Protection of Human Health – Commercial Use (CU), Unrestricted (UU) and Protection of Groundwater (POGW), and NYSDEC CP-51 Gasoline and Fuel Oil Contaminated Soils. Respective sample locations and soil sample results are shown on **Table 1**. Laboratory reports are provided in **Appendix D**.

No compounds were detected above applicable SCOs.

4.3 Data Validation Results

QA/QC procedures were incorporated into both field and laboratory protocols in accordance with the QAPP. The data validation summary is provided in **Appendix E**. Based on the data validation summary, the results indicate that the dataset is acceptable with qualifications and usable for the purposes of this investigation.

5 DATA GAPS

The objective of the Phase II ESA was to investigate the data gaps identified in the SQA. The below scope of work was carried out to address the data gaps. A short description of the resolution for each data gap is also provided below.

- <u>Data Gap #1 Interior of Garage Bay Structure:</u> During a site visit, two different types of underground hydraulic lift system were found at the Site.
 - <u>Executed:</u> To evaluate potential impacts from hydraulic lifts, one of which had a detached underground oil storage tank, the concrete floor was cut and the lift systems were removed using a hydraulic excavator. Soil samples were screened in the field using a PID and visual observations. No field evidence of impacts (e.g. odors, elevated PID readings, soil staining, free product).
 - No odors, staining, or elevated PID readings were noted during lift removal. Three (3) soil samples were collected from each excavation. No exceedances of unrestricted use SCOs were detected. No further investigation is recommended at this time.
- <u>Data Gap #2 Regulated Building Materials:</u> The dates for construction of subject building (1945) there is a potential for the building to contain regulated building materials including asbestos, lead-based paint, and PCB containing building material.
 - <u>Executed:</u> A regulated building material survey was completed to assess for the potential presence of asbestos, lead-based paint, and PCB containing building materials. The RBM survey is included in **Appendix A.**

6 UPDATED CONCEPTUAL SITE MODEL

The conceptual site model (CSM) identifies actual and/or expected contaminants of concern (COC), the nature and extent of contamination to the degree known, the potential pathways for migration of contamination, and the potential receptors, both human health and ecological. This CSM is based on the current understanding of identified Site contaminants.

6.1 Contaminants of Concern

Based on the known historical operations at the Site and the findings of this Phase II ESA, the following COC have been identified. The list below shows COC identified during the project conducted on the subject property to date.

Hydraulic Oil stored in below-ground lifts and tank

None identified.

Anthropogenic Fill

- Potential for Metals; and
- Potential for polycyclic aromatic hydrocarbons (PAHs).

Regulated Building Materials (RBMs)

 A RBM survey report was prepared under a separate cover and is included as Appendix A; as such, RBMs are not discussed in this CSM.

6.2 Site Geology and Hydrogeology

The Phase II ESA investigation identified fill consisting of anthropogenic materials (i.e., brick, ash, and cinders,) were observed within both lift excavation. The greatest depth where indications of anthropogenic fill was observed in the south lift excavation at approximately 8 ft bgs. Information obtained as part of the 2023 Phase I ESA (Section 1.3.1) indicates that the underlying bedrock is expected to be of Akron Dolostone, Cobleskill Limestone, and Salina Ground consisting of Camillus and Syracuse formation shale, dolostone, gypsum, and salt.

Based on surface topography it is expected that groundwater under the subject property generally flows to the southwest towards the Erie Canal.

6.3 Contaminant Fate and Transport

As described above, urban fill has the potential to contain PAHs; however, none were detected above unrestricted use during this Phase II ESA. Generally, PAHs are hydrophobic and will tend to adsorb soil particles; however, shorter carbon chain compounds are more soluble in water. PAHs can be dispersed via their adherence to particles or in groundwater.

Urban fill also has the potential to contain metals. Metals cannot degrade; however, they can be transformed (such as different forms of mercury) or dispersed via adherence to particles or advection in groundwater. Generally, metals (with the exception of mercury) are not volatile. Metals have relatively high Koc (soil adsorption coefficients) which limits fate and transport. It is not expected that metals from this source would migrate significantly in the subsurface.

6.4 Potential Receptors and Exposure Pathways

<u>Soils:</u> Shallow soils throughout the subject property are generally covered with either crushed gravel/paved parking lots, or under the footprint of on-Site buildings. There are some greenspace and vegetated areas within the Site where Site workers or trespassers could be exposed to surficial releases of contaminants in the soil (if present). Adjacent parcels may be impacted during dust generating activities or from overland flow of impacted sediment. Site workers excavating or digging within the Site during demolition activities or utility work are potential receptors of impacted soils.

7 CONCLUSION AND RECOMMENDATIONS

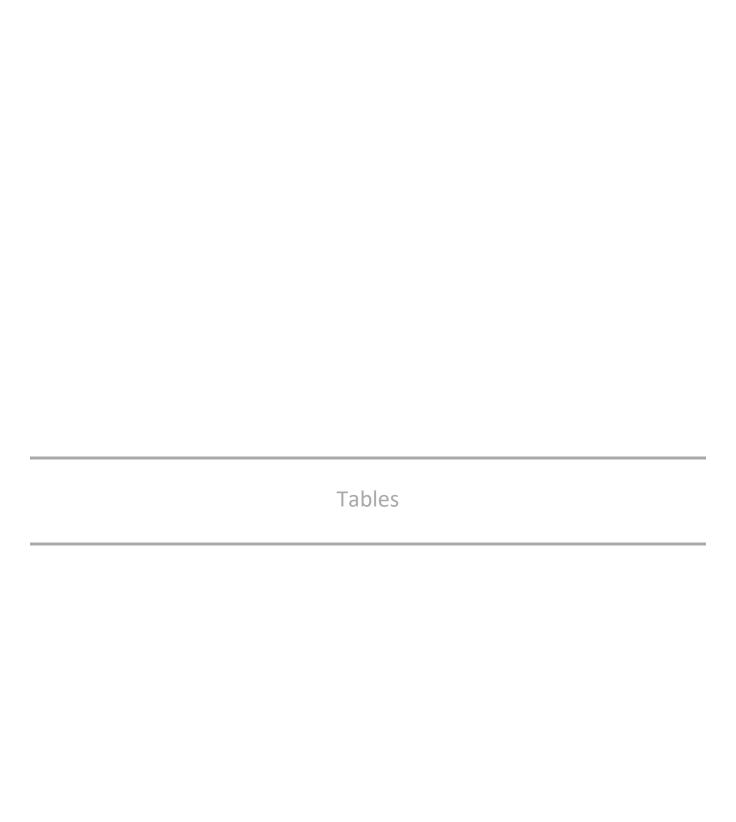
The conclusions and recommendations of the assessment are summarized below.

Lift Removal Observations

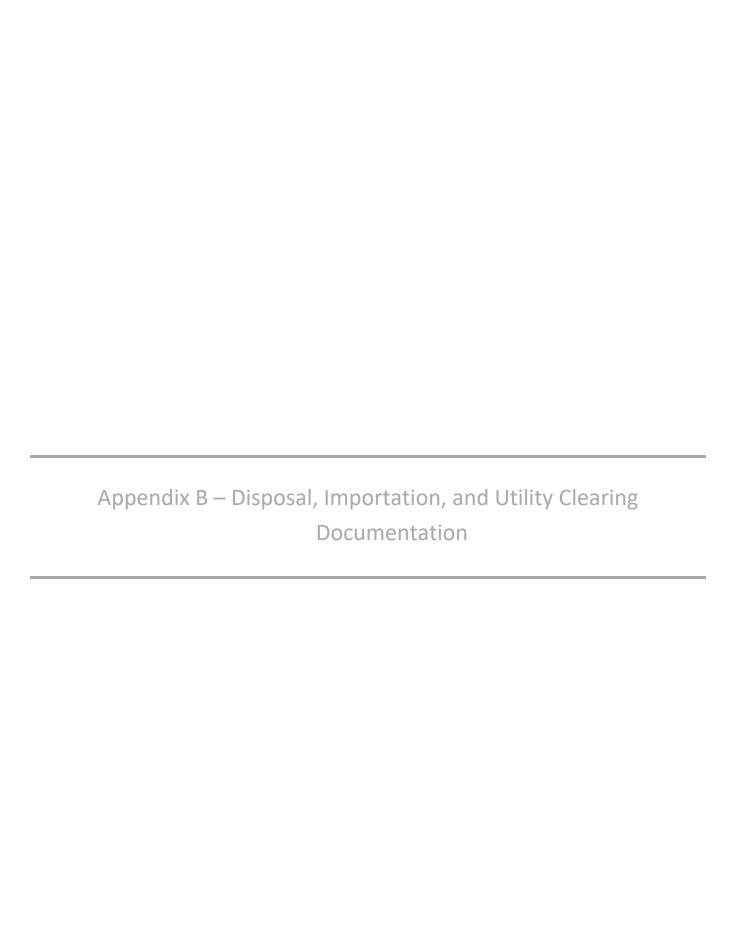
Two (2) lift systems, referred to as the northern lift and southern lift, were removed. The lifts both measured 7.5 feet and contained a mixture of hydraulic oil and water. One (1) hydraulic oil tank connected to the southern lift, with approximately 50 gallons of capacity, was in good condition and removed with this event. The tank was found to be primarily filled with hydraulic oil. Both lifts were found to be situated in sand fill and in good condition. There were no indications (odor, elevated PID readings, staining) of impacts in adjacent soils. The excavations reached a depth of 8 feet below ground surface (ft bgs) and were subsequently backfilled with excavated soil and imported crusher run #1.

Soil Quality

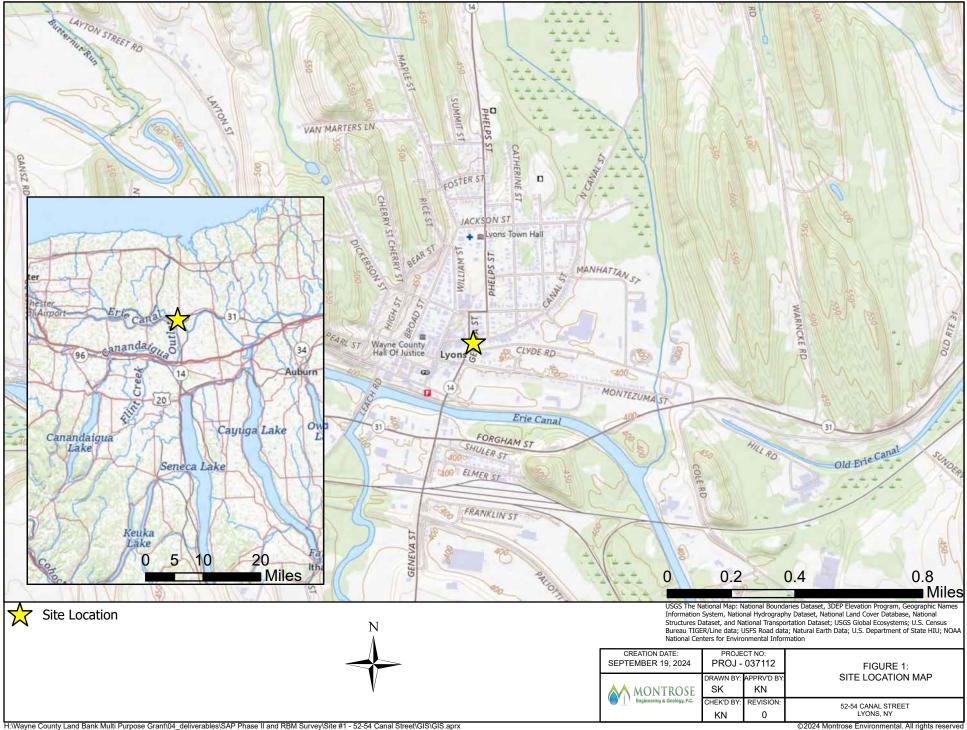
Three (3) soil samples were collected from each excavation for a total of six (6) samples. Visual/olfactory indications of impacts to soil were not observed by Montrose, and elevated photoionization detector (PID) readings above background were not registered during field screening of the soil samples. Some anthropogenic fill components (brick, ash, cinders) were observed during this lift removal.

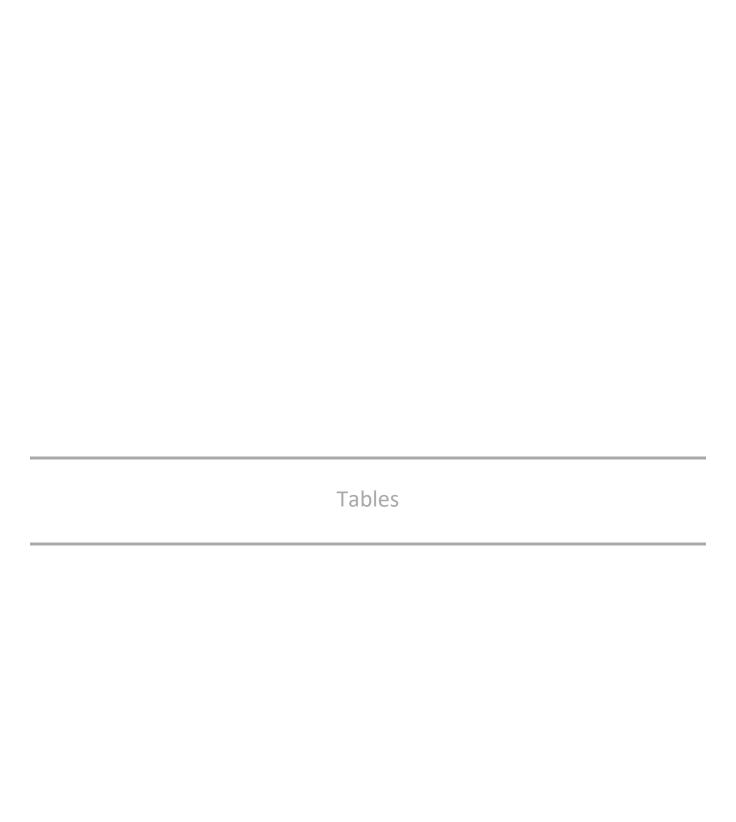

Soil samples were collected and analyzed for volatile organic compound (VOC) analysis (by EPA method 8260), semi-volatile organic compound (SVOC) analysis (by EPA method 8270) and PCB analysis (by EPA method 8082). Analytical results found no detections above unrestricted use soil cleanup objectives.

Recommendations


Based on the results of the Phase II ESA as described herein, Montrose recommends the following:

- 1. No further investigation or remediation is recommended at this time.
- 2. Given the observation of anthropogenic fill, during future ground intrusive work it is recommended that soils be managed in accordance with 6 NYCRR Part 360.





Sample Location			NY-RESC: New				EB-01	EB-02	FD-01	ESW-01	ESW-02	ESW-03	ESW-04
Lab ID		NY-UNRES: New York	York NYCRR Part 375 Commercial	NY-POGW: New York NYCRR Part 375	NY-CP51: New		L2476274-01	L2476426-01	L2476426-02	L2476274-02	L2476274-03	L2476426-03	L2476426-04
Sample Date Matrix		NYCRR Part 375 New	Criteria, New York	Protection of Groundwater	York DEC CP-		12/27/2024 Soil	12/30/2024 Soil	12/30/2024 Soil	12/27/2024 Soil	12/27/2024 Soil	12/30/2024 Soil	12/30/2024 Soil
Remarks		York Unrestricted use Criteria Criteria	Restricted use Criteria	Criteria, New York Restricted Use Criteria	51 Soil Cleanup Levels Criteria		Don	501	FD of EB-02	bon	5011	5011	bon
Parameter		NY-UU	NY-CU	NY-POGW	NY-CP51	Units	Result Q MDL	Result Q MDL	Result Q MDL	Result Q MDL	Result Q MDL	Result Q MDL	Result Q MDL
Volatiles 1.1.1-Trichloroethane	71-55-6	0.68	500	0.68		/V	U 0.00017	U 0.0002	U 0.00019	U 0.00016	U 0.00018	U 0.0002	U 0.00018
1,1,2,2-Tetrachloroethane	79-34-5	0.68	500	0.68	- :	mg/Kg mg/Kg	UJ- 0.00017	U 0.0002	U 0.00019	U 0.00016	U 0.00018	U 0.0002	U 0.00018
1,1,2-Trichloroethane	79-00-5	-	-	-	-	mg/Kg	UJ- 0.00028	U 0.00033	U 0.0003	U 0.00026	U 0.00028	U 0.00033	U 0.00029
1,1-Dichloroethane	75-34-3	0.27	240	0.27	-	mg/Kg	U 0.00015	U 0.00018	U 0.00016	U 0.00014	U 0.00015	U 0.00018	U 0.00016
1,1-Dichloroethene	75-35-4 87-61-6	0.33	500	0.33	-	mg/Kg	U 0.00025 UR 0.00033	U 0.00029 U 0.0004	U 0.00027 U 0.00036	U 0.00023 U 0.00032	U 0.00025 U 0.00034	U 0.00029 U 0.0004	U 0.00026 U 0.00035
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	120-82-1	-	-	-	-	mg/Kg mg/Kg	UR 0.00033 UR 0.00028	U 0.0004 U 0.00033	U 0.00036 U 0.0003	U 0.00032 U 0.00027	U 0.00034	U 0.0004	U 0.00035
1,2,4-Trimethylbenzene	95-63-6	3.6	190	3.6	3.6	mg/Kg	UJ- 0.00035	U 0.00041	U 0.00037	U 0.00033	U 0.00035	U 0.00041	U 0.00036
1,2-Dibromo-3-chloropropane	96-12-8	-	-	-	-	mg/Kg	UJ- 0.001	U 0.0012	U 0.0011	U 0.00098	U 0.001	U 0.0012	U 0.0011
1,2-Dibromoethane	106-93-4	-	-	-	-	mg/Kg	UJ- 0.00029	U 0.00034 U 0.00018	U 0.00031	U 0.00028	U 0.0003	U 0.00034	U 0.0003
1,2-Dichlorobenzene 1,2-Dichloroethane	95-50-1 107-06-2	1.1 0.02	500 30	1.1 0.02	-	mg/Kg mg/Kg	UJ- 0.00015 U 0.00027	U 0.00018 U 0.00032	U 0.00016 U 0.00029	U 0.00014 U 0.00025	U 0.00015 U 0.00027	U 0.00018 U 0.00032	U 0.00016 U 0.00028
1,2-Dichloropropane	78-87-5	-	-	-	-	mg/Kg	UJ- 0.00013	U 0.00015	U 0.00014	U 0.00012	U 0.00013	U 0.00015	U 0.00014
1,3,5-Trimethylbenzene	108-67-8	8.4	190	8.4	8.4	mg/Kg	UJ- 0.0002	U 0.00024	U 0.00022	U 0.00019	U 0.0002	U 0.00024	U 0.00021
1,3-Dichlorobenzene	541-73-1	2.4	280	2.4	-	mg/Kg	UJ- 0.00015	U 0.00018	U 0.00016	U 0.00014	U 0.00016	U 0.00018	U 0.00016
1,4-Dichlorobenzene 1,4-Dioxane	106-46-7 123-91-1	1.8 0.1	130 130	1.8	-	mg/Kg mg/Kg	UJ- 0.00018 U 0.036	U 0.00021 U 0.043	U 0.00019 U 0.039	U 0.00017 U 0.035	U 0.00018 U 0.037	U 0.00021 U 0.043	U 0.00019 U 0.038
2-Butanone	78-93-3	0.12	500	0.12		mg/Kg	U 0.0023	U 0.0027	U 0.0025	U 0.0022	U 0.0024	U 0.0027	U 0.0024
2-Hexanone	591-78-6	-	-	-	-	mg/Kg	UJ- 0.0012	U 0.0014	U 0.0013	U 0.0012	U 0.0012	U 0.0014	U 0.0013
4-Methyl-2-pentanone	108-10-1		-		-	mg/Kg	U 0.0013	U 0.0016	U 0.0014	U 0.0013	U 0.0014	U 0.0016	U 0.0014
Acetone Benzene	67-64-1 71-43-2	0.05 0.06	500 44	0.05 0.06	0.06	mg/Kg mg/Kg	0.0099 J 0.005 UJ- 0.00017	U 0.0059 U 0.0002	U 0.0054 U 0.00018	U 0.0047 U 0.00016	U 0.0051	U 0.0059 U 0.0002	U 0.0052 U 0.00018
Bromochloromethane	74-97-5	-	-	-	-	mg/Kg	U 0.00017	U 0.00025	U 0.00023	U 0.00018	U 0.00022	U 0.00025	U 0.00018
Bromodichloromethane	75-27-4	-	-	-	-	mg/Kg	UJ- 0.00011	U 0.00013	U 0.00012	U 0.00011	U 0.00012	U 0.00013	U 0.00012
Bromoform	75-25-2	-	-	-	-	mg/Kg	UJ- 0.00026	U 0.0003	U 0.00028	U 0.00024	U 0.00026	U 0.0003	U 0.00027
Bromomethane Carbon disulfide	74-83-9 75-15-0	-	-	-	-	mg/Kg mg/Kg	U 0.0006 U 0.0047	U 0.00071 U 0.0056	U 0.00065 U 0.0051	U 0.00057 U 0.0045	U 0.00062 U 0.0048	U 0.00071 U 0.0056	U 0.00063 U 0.005
Carbon tetrachloride	56-23-5	0.76	22	0.76		mg/Kg	UJ- 0.00024	U 0.00028	U 0.00026	U 0.00023	U 0.00024	U 0.00028	U 0.00025
Chlorobenzene	108-90-7	1.1	500	1.1	-	mg/Kg	UJ- 0.00013	U 0.00016	U 0.00014	U 0.00012	U 0.00013	U 0.00016	U 0.00014
Chloroethane	75-00-3	-	-		-	mg/Kg	U 0.00047	U 0.00055	U 0.00051	U 0.00044	U 0.00048	U 0.00056	U 0.00049
Chloroform Chloromethane	67-66-3 74-87-3	0.37	350	0.37	-	mg/Kg mg/Kg	U 0.00014 U 0.00097	U 0.00017 U 0.0011	U 0.00016 U 0.001	U 0.00014 U 0.00092	U 0.00015 U 0.00099	U 0.00017 U 0.0011	U 0.00015 U 0.001
cis-1,2-Dichloroethene	156-59-2	0.25	500	0.25	-	mg/Kg	UJ- 0.00018	U 0.00021	U 0.0002	U 0.00017	U 0.00018	U 0.00022	U 0.00019
cis-1,3-Dichloropropene	10061-01-5	-	-	-	-	mg/Kg	UJ- 0.00016	U 0.00019	U 0.00018	U 0.00016	U 0.00017	U 0.00019	U 0.00017
Cyclohexane	110-82-7	-	-	-	-	mg/Kg	UJ- 0.00056	U 0.00067	U 0.00061	U 0.00054	U 0.00058	U 0.00067	U 0.00059
Dibromochloromethane Dichlorodifluoromethane	124-48-1 75-71-8	-	-	-	-	mg/Kg mg/Kg	UJ- 0.00014 U 0.00095	U 0.00017 U 0.0011	U 0.00016	U 0.00014 U 0.0009	U 0.00015 U 0.00097	U 0.00017 U 0.0011	U 0.00015
Ethylbenzene	100-41-4	1	390	1	1.0	mg/Kg	UJ- 0.00015	U 0.00017	U 0.00016	U 0.00014	U 0.00015	U 0.00017	U 0.00015
Freon-113	76-13-1	-	-	-	-	mg/Kg	U 0.00072	U 0.00085	U 0.00078	U 0.00068	U 0.00073	U 0.00085	U 0.00076
Isopropylbenzene	98-82-8 79-20-9	-	-	-	2.3	mg/Kg	UJ- 0.00011 U 0.00099	U 0.00013 U 0.0012	U 0.00012 U 0.0011	U 0.00011 U 0.00094	U 0.00012 U 0.001	U 0.00013 U 0.0012	U 0.00012 U 0.001
Methyl Acetate Methyl cyclohexane	108-87-2	-		-	-	mg/Kg mg/Kg	UJ- 0.00063	U 0.0012	U 0.00068	U 0.00059	U 0.00064	U 0.0012	U 0.0001
Methyl tert butyl ether	1634-04-4	0.93	500	0.93	0.93	mg/Kg	U 0.00021	U 0.00025	U 0.00022	U 0.0002	U 0.00021	U 0.00025	U 0.00022
Methylene chloride	75-09-2	0.05	500	0.05	-	mg/Kg	UJ- 0.0024	U 0.0028	U 0.0026	U 0.0022	U 0.0024	U 0.0028	U 0.0025
n-Butylbenzene	104-51-8 103-65-1	12 3.9	500 500	12 3.9	12.0 3.9	mg/Kg	UR 0.00017 UJ- 0.00018	U 0.0002 U 0.00021	U 0.00019 U 0.00019	U 0.00016 U 0.00017	U 0.00018 U 0.00018	U 0.0002 U 0.00021	U 0.00018
n-Propylbenzene o-Xvlene	95-47-6	3.9	300	3.9	3.9	mg/Kg mg/Kg	UJ- 0.00018	U 0.00021	U 0.00032	U 0.00029	U 0.00031	U 0.00036	U 0.00019 U 0.00032
p/m-Xylene	179601-23-1	-	-	-	-	mg/Kg	UJ- 0.00058	U 0.00069	U 0.00063	U 0.00055	U 0.00059	U 0.00069	U 0.00061
p-Isopropyltoluene	99-87-6	-	-	-	10.0	mg/Kg	UJ- 0.00011	U 0.00013	U 0.00012	U 0.00011	U 0.00012	U 0.00013	0.00077 J 0.00012
sec-Butylbenzene Styrene	135-98-8 100-42-5	11	500	11	11.0	mg/Kg mg/Kg	UJ- 0.00015 UJ- 0.0002	U 0.00018 U 0.00024	U 0.00016 U 0.00022	U 0.00014 U 0.00019	U 0.00015 U 0.00021	U 0.00018 U 0.00024	U 0.00016 U 0.00021
tert-Butylbenzene	98-06-6	5.9	500	5.9	5.9	mg/Kg	UJ- 0.00012	U 0.00014	U 0.00013	U 0.00019	U 0.00021	U 0.00014	U 0.00021
Tetrachloroethene	127-18-4	1.3	150	1.3	-	mg/Kg	UJ- 0.0002	U 0.00024	U 0.00022	U 0.00019	U 0.00021	U 0.00024	U 0.00021
Toluene	108-88-3	0.7	500	0.7	0.7	mg/Kg	UJ- 0.00056	U 0.00067	U 0.00061	U 0.00054	U 0.00057	U 0.00067	U 0.00059
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	156-60-5 10061-02-6	0.19	500	0.19	-	mg/Kg	UJ- 0.00014 UJ- 0.00028	U 0.00017 U 0.00034	U 0.00015 U 0.0003	U 0.00014 U 0.00027	U 0.00014 U 0.00029	U 0.00017 U 0.00034	U 0.00015 U 0.0003
Trichloroethene	79-01-6	0.47	200	0.47	-	mg/Kg mg/Kg	UJ- 0.00028	U 0.00034	U 0.0003	U 0.00027	U 0.00029	U 0.00034	U 0.0003
Trichlorofluoromethane	75-69-4	-	-	-		mg/Kg	U 0.00072	U 0.00085	U 0.00078	U 0.00068	U 0.00074	U 0.00086	U 0.00076
Vinyl chloride	75-01-4	0.02	13	0.02	-	mg/Kg	U 0.00035	U 0.00041	U 0.00038	U 0.00033	U 0.00035	U 0.00041	U 0.00036
Xylenes, Total Semivolatiles	1330-20-7	0.26	500	1.6	0.26	mg/Kg	U 0.0003	U 0.00036	U 0.00032	U 0.00029	U 0.00031	U 0.00036	U 0.00032
1,2,4,5-Tetrachlorobenzene	95-94-3	-	-	-	-	mg/Kg	U 0.019	U 0.018	U 0.018	U 0.021	U 0.019	U 0.018	U 0.019
1,4-Dioxane	123-91-1	0.1	130	0.1		mg/Kg	UJ- 0.0082	U 0.0077	U 0.0078	UJ- 0.0092	UJ- 0.0082	U 0.0078	U 0.0083
2,3,4,6-Tetrachlorophenol	58-90-2	-	-	-	-	mg/Kg	U 0.036	U 0.034	U 0.034	U 0.04	U 0.036	U 0.034	U 0.036
2,4,5-Trichlorophenol	95-95-4	-	-	-	-	mg/Kg	U 0.034	U 0.032	U 0.032	U 0.038	U 0.034	U 0.033	U 0.035
2,4,6-Trichlorophenol 2,4-Dichlorophenol	88-06-2 120-83-2	-	-	-	-	mg/Kg mg/Kg	U 0.034 U 0.029	U 0.032 U 0.027	U 0.032 U 0.027	U 0.038 U 0.032	U 0.034 U 0.029	U 0.032 U 0.027	U 0.034 U 0.029
2,4-Dimethylphenol	105-67-9	-	-	-	-	mg/Kg	U 0.059	U 0.055	U 0.056	U 0.066	U 0.059	U 0.056	U 0.06
2,4-Dinitrophenol	51-28-5	-	-	-	-	mg/Kg	UR 0.083	U 0.078	U 0.079	U 0.093	U 0.084	U 0.079	U 0.084
2,4-Dinitrotoluene	121-14-2	-	-	-	-	mg/Kg	U 0.036	U 0.034	U 0.034	U 0.04	U 0.036	U 0.034	U 0.036
2,6-Dinitrotoluene 2-Chloronaphthalene	606-20-2 91-58-7	-	-	-	-	mg/Kg mg/Kg	U 0.031 U 0.018	U 0.029 U 0.017	U 0.029 U 0.017	U 0.034 U 0.02	U 0.031 U 0.018	U 0.029 U 0.017	U 0.031 U 0.018
2-Chlorophenol	95-57-8	-	-	-	-	mg/Kg	U 0.021	U 0.02	U 0.02	U 0.024	U 0.021	U 0.02	U 0.021
2-Methylnaphthalene	91-57-6	-	-		-	mg/Kg	U 0.022	U 0.02	U 0.02	U 0.024	U 0.022	U 0.02	0.038 J 0.022
2-Methylphenol	95-48-7	0.33	500	0.33	-	mg/Kg	U 0.028	U 0.026	U 0.026	U 0.031	U 0.028	U 0.026	U 0.028
2-Nitroaniline 2-Nitrophenol	88-74-4 88-75-5	-	-	-	-	mg/Kg mg/Kg	U 0.034 U 0.067	U 0.032 U 0.063	U 0.032 U 0.064	U 0.038 U 0.075	U 0.035 U 0.067	U 0.033 U 0.064	U 0.035 U 0.068
2 maophenoi	U-1J-J		<u> </u>			mg/Kg	0 0.007	0 0.003	0 0.004	0 0.073	0 0.007	0 0.004	0.008

Sumple Loadson	26-03	ESW-04 L2476426-04	
Second Marix Value Val			
Marits Parameter Paramet	2024 I	12/30/2024	
Parameter Contrac Contract Contract Contract Contract Cont		12/30/2024 Soil	
Second S			
S-7-Distributes S-7-Distri	MDL Resu	ult Q MDL	
SM-thylphenol		UJ- 0.048	
Section Sect		U 0.028	
4.6-Dimetro-cressed		U 0.034	
## Chromatine 106-47-8 - - - -	0.082	U 0.087	
## Chromatine 1064-78	0.026	U 0.028	
A-Chicophenylphenylether 7005-723 - - - - - mg/Kg U 0.019 U 0.018 U 0.018 U 0.012 U 0.019 U 0.018 U 0.017 U 0.077 U 0.070 U 0.083 U 0.074 U 0.077 U 0.085 U 0.073 U 0.071	0.031	UJ- 0.033	
February	0.018	U 0.019	
Accomplith/lene		U 0.075	
Accesphenone 208-96-8 100 500 107 100 mg/Kg U 0.028 U 0.026 U 0.026 U 0.031 U 0.028 U 0.028 U 0.026 U 0.031 U 0.028 U 0.029 U 0.		U 0.074	
Accordenance		U 0.019	
Aniline		U 0.028	
Anthracene 120-12-7 100 500 1000 100 mg/Kg U 0.035 U 0.033 U 0.033 U 0.039 U 0.035 U 0.034 U 0.035 U 0.034 U 0.035 U 0.0		U 0.022	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		UJ- 0.085	
Remzakehyde		U 0.035	
Benzo(a)anthracen 56-55-3 1 5.6 1 1.0 mg/Kg 0.039 J 0.02 U 0.019 U 0.019 U 0.022 U 0.022 U 0.024 U Benzo(a)pyrene 50-32-8 1 1 22 1.0 mg/Kg U 0.044 U 0.041 U 0.041 U 0.041 U 0.049 U 0.044 U Benzo(a)pyrene 205-99-2 1 5.6 1.7 1.0 mg/Kg 0.043 J 0.03 U 0.028 U 0.034 U 0.033 U 0.038 U 0.034 U 0.035 U 0.025 U 0.027 U 0.024 U 0.024 U 0.024 U 0.024 U 0.025 U		U 0.063	
Benzo(sh)prome 50-32-8 1		U 0.049	
$ \begin{array}{c} \text{Benzo(ph)flooranthene} & 205.99-2 & 1 & 5.6 & 1.7 & 1.0 & \text{mg/Kg} & 0.043 & J & 0.03 & U & 0.028 & U & 0.034 & U & 0.03 & U \\ \text{Benzo(gh)peylene} & 191-24-2 & 100 & 500 & 1000 & 100 & \text{mg/Kg} & 0.03 & J & 0.021 & U & 0.02 & U & 0.02 & U & 0.024 & U & 0.021 & U \\ \text{Benzo(ph)peylene} & 207.08-9 & 0.8 & 56 & 1.7 & 0.8 & \text{mg/Kg} & U & 0.029 & U & 0.027 & U & 0.027 & U & 0.032 & U & 0.029 & U \\ \text{Biphenyl} & 92.52-4 & - & - & - & - & - & \text{mg/Kg} & U & 0.023 & U & 0.022 & U & 0.023 & U & 0.029 & U \\ \text{Bisig2-chloroschoxymethane} & 111.91-1 & - & - & - & - & - & \text{mg/Kg} & U & 0.018 & U & 0.017 & U & 0.017 & U & 0.020 & U & 0.018 & U \\ \text{Bisi2-chloroschoxyhether} & 111.44-4 & - & - & - & - & - & \text{mg/Kg} & U & 0.024 & U & 0.023 & U & 0.023 & U & 0.027 & U & 0.024 & U \\ \text{Bisi2-chloroschoxyhether} & 108.60-1 & - & - & - & - & - & \text{mg/Kg} & U & 0.031 & U & 0.023 & U & 0.023 & U & 0.027 & U & 0.031 & U \\ \text{Bisi2-chloroschoxyhether} & 117.81-7 & - & - & - & - & - & \text{mg/Kg} & U & 0.062 & U & 0.088 & U & 0.069 & U & 0.069 & U & 0.069 & U & 0.069 & U & 0.060 & U \\ \text{Bisi2-chloroschoxyhether} & 108.60-1 & - & - & - & - & - & \text{mg/Kg} & U & 0.062 & U & 0.088 & U & 0.069 & U & 0.069 & U & 0.060 & U \\ \text{Bisi2-chloroschoxyhether} & 117.81-7 & - & - & - & - & - & \text{mg/Kg} & U & 0.062 & U & 0.088 & U & 0.058 & U & 0.069 & U & 0.069 & U & 0.062 & U \\ \text{Bisi2-chloroschoxyhether} & 108.60-1 & - & - & - & - & - & \text{mg/Kg} & U & 0.062 & U & 0.088 & U & 0.069 & U & 0.069 & U & 0.069 & U & 0.060 & U & 0.069 & U & 0.060 & U & 0.061 & U & 0.0$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
Benzo(L) fluoranthene 207.08-9 0.8 56 1.7 0.8 mg/Kg U 0.029 U 0.027 U 0.027 U 0.032 U 0.029 U			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
Bist2-chloroethoxy)methane			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		U 0.024	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		U 0.018	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		U 0.024	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		U 0.031 U 0.063	
Caprolactam		U 0.063	
		U 0.046	
$ \begin{array}{c} \text{Chrysene} & 218-01-9 & 1 & 56 & 1 & 1 & \text{mg/Kg} & 0.035 & J & 0.019 & U & 0.017 & U & 0.018 & U & 0.021 & U & 0.019 & U \\ \text{Dihenzofa,hanthracene} & 53-70-3 & 0.33 & 0.56 & 1000 & 0.33 & \text{mg/Kg} & U & 0.021 & U & 0.019 & U & 0.02 & U & 0.023 & U & 0.021 & U \\ \text{Dibenzofanan} & 132-64-9 & 7 & 350 & 210 & - & \text{mg/Kg} & U & 0.017 & U & 0.016 & U & 0.016 & U & 0.019 & U & 0.017 & U \\ \text{Diethy pluthalate} & 84-66-2 & - & - & - & - & - & \text{mg/Kg} & U & 0.016 & U & 0.016 & U & 0.016 & U & 0.018 & U & 0.017 & U \\ \text{Dientyl pluthalate} & 84-66-2 & - & - & - & - & - & \text{mg/Kg} & U & 0.016 & U & 0.016 & U & 0.016 & U & 0.018 & U & 0.017 & U \\ \text{Dientyl pluthalate} & 8131-13 & - & - & - & - & - & \text{mg/Kg} & U & 0.038 & U & 0.035 & U & 0.036 & U & 0.042 & U & 0.038 & U \\ \text{Dientylphthalate} & 84-74-2 & - & - & - & - & - & \text{mg/Kg} & U & 0.034 & U & 0.032 & U & 0.038 & U & 0.038 & U \\ \text{Dientylphthalate} & 84-74-2 & - & - & - & - & - & \text{mg/Kg} & U & 0.034 & U & 0.032 & U & 0.038 & U & 0.038 & U \\ \text{Dientylphthalate} & 817-84-0 & - & - & - & - & \text{mg/Kg} & U & 0.061 & U & 0.057 & U & 0.057 & U & 0.068 & U & 0.061 & U \\ \text{Fluoranthene} & 206-44-0 & 100 & 500 & 1000 & 100 & \text{mg/Kg} & 0.058 & J & 0.02 & U & 0.019 & U & 0.019 & U & 0.017 & U \\ \text{Fluoranthene} & 86-73-7 & 30 & 500 & 386 & 30 & \text{mg/Kg} & U & 0.017 & U & 0.016 & U & 0.016 & U & 0.019 & U & 0.017 & U \\ \text{Dientylphicalate} & 86-73-7 & 30 & 500 & 386 & 30 & \text{mg/Kg} & U & 0.017 & U & 0.016 & U & 0.016 & U & 0.019 & U & 0.017 & U \\ \text{Dientylphicalate} & 86-73-7 & 30 & 500 & 386 & 30 & \text{mg/Kg} & U & 0.017 & U & 0.016 & U & 0.016 & U & 0.019 & U & 0.017 & U \\ \text{Dientylphicalate} & 86-73-7 & 30 & 500 & 386 & 30 & \text{mg/Kg} & U & 0.017 & U & 0.016 & U & 0.016 & U & 0.019 & U & 0.017 & U \\ \text{Dientylphicalate} & 86-73-7 & 30 & 500 & 386 & 30 & \text{mg/Kg} & U & 0.017 & U & 0.016 & U & 0.016 & U & 0.016 & U & 0.019 & U & 0.017 & U \\ \text{Dientylphicalate} & 86-73-7 & 30 & 500 & 386 & 30 & \text{mg/Kg} & U & 0.017 & U & 0.016 & U & 0.016 & U & 0.019 & U & 0.017 & U \\ Di$		U 0.055	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		U 0.021	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		U 0.017	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		U 0.017	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000	U 0.038	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		U 0.034	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		U 0.062	
Fluorene 86-73-7 30 500 386 30 mg/Kg U 0.017 U 0.016 U 0.016 U 0.019 U 0.017 U			
		U 0.018	
PIEARCHIOLOGO 110-7-1 0.00 0 0.02 - HIGNEY 0 0.02 0 0.02 0 0.02 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02		U 0.02	
Hexachlorobutadiene 87-68-3 mg/Kg U 0.026 U 0.024 U 0.025 U 0.029 U 0.026 U	0.025	U 0.026	
Hexachlorocyclopentadiene 77-47-4 mg/Kg U 0.16 U 0.15 U 0.15 U 0.18 U 0.16 U	0.15	U 0.16	
Hexachloroethane 67-72-1 mg/Kg U 0.029 U 0.027 U 0.027 U 0.032 U 0.029 U		U 0.029	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.024 0.03	39 J 0.025	
Isophorone 78-59-1 mg/Kg U 0.023 U 0.022 U 0.022 U 0.026 U 0.023 U 0.025 U 0.025 U 0.026 U 0.025 U 0.026 U 0.026 U 0.026 U 0.027 U 0.027 U 0.027 U 0.028 U		U 0.024	
Naphthalene 91-20-3 12 500 12 12.0 mg/Kg U 0.022 U 0.02 U 0.02 U 0.02 U 0.02 U 0.022 U			
NDPA/DPA 86-30-6 mg/Kg U 0.02 U 0.019 U 0.019 U 0.023 U 0.02 U		U 0.021	
Nitrobenzene 98-95-3 mg/Kg U 0.026 U 0.025 U 0.025 U 0.03 U 0.026 U		U 0.027	
n-Nitrosodi-n-propylamine 621-64-7 mg/Kg U 0.028 U 0.026 U 0.026 U 0.031 U 0.028 U		U 0.028	
p-Chloro-m-cresol 59-50-7 mg/Kg U 0.027 U 0.025 U 0.025 U 0.03 U 0.027 U		U 0.027	
Pentachlorophenol 87-86-5 0.8 6.7 0.8 - mg/Kg U 0.039 U 0.037 U 0.037 U 0.044 U 0.039 U		U 0.04	
Phenanthrene 85-01-8 100 500 1000 100 mg/Kg 0.034 J 0.022 U 0.02 U 0.02 U 0.024 U 0.022 U 0.025 U 0.02			
Phenol 108-95-2 0.33 500 0.33 - mg/Kg U 0.027 U 0.025 U 0.026 U 0.03 U 0.027 U	0.026	U 0.027	
Pyrene 129-00-0 100 500 1000 100 mg/Kg 0.052 J 0.018 U 0.017 U 0.017 U 0.02 U 0.018 U	0.017 0.11	1 0.018	
Polychlorinated Biphenyls	Lacateal		
Arcelor 1016 12674-11-2 0.1 1 3.2 - mg/Kg U 0.00456 U 0.00449 U 0.00437 U 0.00507 U 0.00448 U		U 0.00464	
Arcolor 1221 11104-28-2 0.1 1 3.2 - mg/Kg U 0.00514 U 0.00506 U 0.00493 U 0.00572 U 0.00506 U	0.00495	U 0.00524	
Arcelor 1232 11141-16-5 0.1 1 3.2 - mg/Kg U 0.0109 U 0.0107 U 0.0104 U 0.0121 U 0.0107 U		U 0.0111	
Aroclor 1242 53469-21-9 0.1 1 3.2 - mg/Kg U 0.00692 U 0.00691 U 0.00663 U 0.00769 U 0.00681 U	0.00666	U 0.00704	
Aroclor 1248 12672-29-6 0.1 1 3.2 - mg/Kg U 0.0077 U 0.00758 U 0.00758 U 0.0058 U 0.00758 U 0.00758 U 0.00758 U		U 0.00784	
Aroclor 1254 11097-69-1 0.1 1 3.2 - mg/Kg U 0.00561 U 0.00553 U 0.00538 U 0.00624 U 0.00552 U		U 0.00572	
Aroclor 1260 11096-82-5 0.1 1 3.2 - mg/Kg U 0.00948 U 0.00934 U 0.00909 U 0.0105 U 0.00933 U	0.00914	U 0.00966	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00628	U 0.00664 U 0.00541	
		U 0.00541 U 0.00464	
PCBs, Total 1336-36-3 0.1 1 3.2 - mg/Kg U 0.00456 U 0.00449 U 0.00437 U 0.00507 U 0.00448 U Conventionals	0.00439	U U.00464	
Contentionals - - mg/Kg 90.8 96.5 96.4 81.5 91 97.7	91.4	4	
	71		

mg/kg - Milligram per kilogram

Soil results are reported on a dry-weight basis.

Q - Qualifier MDL - Method Detection Limit

U Analyte was not detected at a concentration greater than the laboratory MDL J The reported value is an estimated value

UJ The analyte was not detected, but the reported limit is estimated.

UJ- The analyte was not detected, but the reported limit is estimated low.

UR The analyte was not detected, but due to deficiences the absent of the analyte could not be verified.

Sample Location		EQUIPM			
Lab ID Sample Date		L2476426-05 12/30/2024 Soil			
Matrix					
Remarks					
Parameter Volatiles	Units	Result	Q	MDL	
1,1,1-Trichloroethane	μg/L		U	0.7	
1,1,2,2-Tetrachloroethane	μg/L		U	0.17	
1,1,2-Trichloroethane	μg/L		U	0.5	
1,1-Dichloroethane 1.1-Dichloroethene	μg/L μg/L		U	0.7	
1,2,3-Trichlorobenzene	μg/L		U	0.7	
1,2,4-Trichlorobenzene	μg/L		U	0.7	
1,2,4-Trimethylbenzene	μg/L		U	0.7	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	μg/L μg/L		U	0.7	
1,2-Dichlorobenzene	μg/L		U	0.7	
1,2-Dichloroethane	μg/L		U	0.13	
1,2-Dichloropropane	μg/L		U	0.14	
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	μg/L μg/L		U	0.7	
1,4-Dichlorobenzene	μg/L μg/L		U	0.7	
1,4-Dioxane	μg/L		U	61	
2-Butanone	μg/L		U	1.9	
2-Hexanone	μg/L		U	1	
4-Methyl-2-pentanone Acetone	μg/L μg/L		U	1.5	
Benzene	μg/L		U	0.16	
Bromochloromethane	μg/L		U	0.7	
Bromodichloromethane	μg/L		U	0.19	
Bromoform Bromomethane	μg/L μg/L		U	0.65	
Carbon disulfide	μg/L μg/L		U	1	
Carbon tetrachloride	μg/L		U	0.13	
Chlorobenzene	μg/L		U	0.7	
Chloroethane Chloroform	μg/L μg/L		U	0.7	
Chloromethane	μg/L μg/L		U	0.7	
cis-1,2-Dichloroethene	μg/L		U	0.7	
cis-1,3-Dichloropropene	μg/L		U	0.14	
Cyclohexane Dibromochloromethane	μg/L μg/L		U	0.27	
Dichlorodifluoromethane	μg/L		U	1	
Ethylbenzene	μg/L		U	0.7	
Freon-113	μg/L		U	0.7	
Isopropylbenzene Methyl Acetate	μg/L μg/L		U	0.7	
Methyl cyclohexane	μg/L μg/L		U	0.23	
Methyl tert butyl ether	μg/L		U	0.17	
Methylene chloride	μg/L		U	0.7	
n-Butylbenzene n-Propylbenzene	μg/L		U	0.7	
o-Xylene	μg/L μg/L		U	0.7	
p/m-Xylene	μg/L		U	0.7	
p-Isopropyltoluene	μg/L		U	0.7	
sec-Butylbenzene	μg/L		U	0.7	
Styrene tert-Butylbenzene	μg/L μg/L		U	0.7	
Tetrachloroethene	μg/L μg/L		U	0.18	
Toluene	μg/L		U	0.7	
trans-1,2-Dichloroethene	μg/L		U	0.7	
trans-1,3-Dichloropropene	μg/L		U	0.16	
Trichloroethene Trichlorofluoromethane	μg/L μg/L		U	0.18	
Vinyl chloride	μg/L		U	0.07	
Xylenes, Total	μg/L		U	0.7	
Semivolatiles		ı		0.24	
1,2,4,5-Tetrachlorobenzene 2,3,4,6-Tetrachlorophenol	μg/L μg/L		U	0.24 2.2	
2,4,5-Trichlorophenol	μg/L μg/L		U	2.1	
2,4,6-Trichlorophenol	μg/L		U	2.1	
2,4-Dichlorophenol	μg/L		U	1.7	
2,4-Dimethylphenol	μg/L		U	2	
2,4-Dinitrophenol 2,4-Dinitrotoluene	μg/L μg/L		U	5.4 0.54	
		1	U	0.84	
	μg/L		U	0.04	
2,6-Dinitrotoluene 2-Chlorophenol	μg/L μg/L		U	0.65	
2,6-Dinitrotoluene 2-Chlorophenol 2-Methylphenol	μg/L μg/L		U U	0.65 2.3	
2,6-Dinitrotoluene 2-Chlorophenol	μg/L		U	0.65	

Sample Location		EQUIPM	ENT	BLANK
Lab ID			7642	
Sample Date		12/	30/20)24
Matrix Remarks			Soil	
Parameter	Units	Result	0	MDL
3-Methylphenol/4-Methylphenol	μg/L	resure	U	1.4
3-Nitroaniline	μg/L		U	1.2
4,6-Dinitro-o-cresol	μg/L		U	2.3
4-Bromophenyl phenyl ether	μg/L		U	0.24
4-Chloroaniline	μg/L		U	0.47
4-Chlorophenyl phenyl ether	μg/L		U	0.39
4-Nitroaniline 4-Nitrophenol	μg/L μg/L		U	1.4 1.4
Acetophenone	μg/L μg/L		U	0.92
Aniline	μg/L		UJ-	0.67
Atrazine	μg/L		U	1
Benzaldehyde	μg/L		U	1.1
Biphenyl	μg/L		U	0.2
Bis(2-chloroethoxy)methane	μg/L		U	0.84
Bis(2-chloroethyl)ether	μg/L		U	0.39
Bis(2-chloroisopropyl)ether	μg/L		U	0.4
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	μg/L		U	1.4
Caprolactam	μg/L		U	2.6
Carbazole	μg/L μg/L		U	0.31
Dibenzofuran	μg/L		U	0.4
Diethyl phthalate	μg/L		U	0.76
Dimethyl phthalate	μg/L		U	0.92
Di-n-butylphthalate	μg/L		U	0.96
Di-n-octylphthalate	μg/L		U	2.3
Hexachlorocyclopentadiene	μg/L		UJ-	1.2
Isophorone	μg/L		U	0.86
NDPA/DPA	μg/L		U	0.92
Nitrobenzene n-Nitrosodi-n-propylamine	μg/L μg/L		U	0.2
p-Chloro-m-cresol	μg/L μg/L		U	0.61
Phenol	μg/L		U	0.35
Semivolatiles SIMs	1 10			
2-Chloronaphthalene	μg/L		U	0.02
2-Methylnaphthalene	μg/L		U	0.03
Acenaphthene	μg/L		U	0.02
Acenaphthylene	μg/L		U	0.02
Anthracene	μg/L	0.04	U	0.02
Benzo(a)anthracene Benzo(a)pyrene	μg/L μg/L	0.04	J	0.03
Benzo(a)pyrene Benzo(b)fluoranthene	μg/L μg/L	0.04	U*	0.02
Benzo(ghi)perylene	μg/L μg/L	0.11	U*	0.02
Benzo(k)fluoranthene	μg/L	0.08	U*	0.03
Chrysene	μg/L	0.05	J	0.03
Dibenzo(a,h)anthracene	μg/L	0.12	U^*	0.02
Fluoranthene	μg/L	0.03	J	0.03
Fluorene	μg/L		U	0.03
Hexachlorobenzene	μg/L		U	0.01
Hexachlorobutadiene	μg/L		U	0.02
Hexachloroethane	μg/L	0.11	U U*	0.02
Indeno(1,2,3-cd)pyrene Naphthalene	μg/L μg/L	0.11	U	0.02
Pentachlorophenol	μg/L		U	0.02
Phenanthrene	μg/L		U	0.04
Pyrene	μg/L		U	0.04
Polychlorinated Biphenyls				
Aroclor 1016	μg/L		U	0.061
Aroclor 1221	μg/L		U	0.061
Aroclor 1232	μg/L		U	0.061
Aroclor 1242	μg/L		U	0.061
Arcelor 1248	μg/L		U	0.061
Aroclor 1254 Aroclor 1260	μg/L		U	0.061
Aroclor 1262	μg/L μg/L		U	0.061
Aroclor 1268	μg/L μg/L		U	0.061
PCBs, Total	μg/L μg/L		U	0.061
,	1 752			

Notes:

 $\mu g/L$ - Microgram per liter

Q - Qualifier

MDL - Method Detection Limit

 $\boldsymbol{U} = \boldsymbol{A} \boldsymbol{n} \boldsymbol{a} \boldsymbol{l} \boldsymbol{y} \boldsymbol{t} \boldsymbol{e}$ was not detected at a concentration greater than the laboratory $\boldsymbol{M} \boldsymbol{D} \boldsymbol{L}$

J The reported value is an estimated value

UJ The analyte was not detected, but the reported limit is estimated.

UJ- The analyte was not detected, but the reported limit is estimated low.

U* The analyte should be considered non-detect based on blank concentrations

ASBESTOS, LEAD PAINT, AND PCB CAULK SURVEY REPORT

Pre-Renovation RBM Survey Vacant Structure 52-54 Canal Street Lyons, New York

Prepared For:

Montrose Environmental 100 S. Clinton Avenue, Suite 2330 Rochester, New York

Prepared By:

Lu Engineers 280 East Broad Street, Suite 170 Rochester, New York 14604

February 2025

ASBESTOS, LEAD PAINT, AND PCB CAULK SURVEY REPORT

Pre-Renovation RBM Survey Vacant Structure 52-54 Canal Street Lyons, New York

TABLE OF CONTENTS

			<u>Page</u>							
1.0	INTRO	DUCTION AND	PROJECT OVERVIEW1							
	1.1	Record Revie	<i>N</i> 1							
2.0	SITE II	NSPECTIONS	1							
	2.1	Asbestos								
	2.2	Lead Paint								
	2.3	PCB Caulk	3							
3.0	ANAL	YTICAL RESULTS	3							
	3.1	Asbestos Results								
	3.2	Lead Paint Re	sults4							
	3.3	PCB Caulk Res	sults							
4.0	ASBES	STOS MATERIALS	S AND APPROXIMATE QUANTITIES6							
5.0	LIMIT	ATIONS OF THE	INVESTIGATION6							
6.0	RECOI	MMENDATIONS	7							
2.0 S 2 2 3.0 A 3 3 4.0 A 5.0 L 6.0 F 6	6.1	Asbestos Con	taining Materials7							
	6.2		7							
	6.3		7							
<u>ATTA</u>	CHMEN	<u>TS</u>								
ATTA	CHMEN	ΤA	Licenses and Certifications							
	_		Roof Core Profiles							
			Sample Location Plans, Analytical Reports, and Chain of Custody							
ALIA	CHIVILIV		Forms							
ATTA	CHMEN	T D	Asbestos Location Plans and Asbestos Inspection Summary Table							
ATTA	CHMEN	ΤE	Site Photographs							

1.0 INTRODUCTION AND PROJECT OVERVIEW

Lu Engineers was retained by Montrose Environmental to provide an asbestos, lead paint, and PCB caulk survey of the building located at 52-54 Canal Street, in Lyons, New York. This survey was performed in anticipation of upcoming renovations to the building.

The asbestos, lead paint, and PCB caulk survey was conducted on November 7, 2024. The intent of this survey was to determine the presence and quantity of asbestos containing materials (ACMs), lead-based paint, and PCB containing caulk. The asbestos survey was conducted in accordance with New York State Department of Labor (NYSDOL) Industrial Code Rule (ICR) 56 by certified inspectors from Lu Engineers. A copy of Lu Engineers' license and inspectors' certifications can be found in Attachment A.

1.1 Records Review

Record drawings of the building or previous surveys were not available for review prior to conducting the asbestos survey.

2.0 SITE INSPECTION

2.1 Asbestos

One of the purposes of the visual inspection was to identify homogeneous areas of suspect asbestos containing materials that exist throughout the area of inspection, as defined in the scope of work. The Asbestos Hazard Emergency Response Act (AHERA) regulations define a homogeneous area as, "... an area of surfacing material, thermal insulation material, or miscellaneous material that is uniform in color and texture." Furthermore, homogeneous areas should consist of the same age and application.

The inspectors identified homogeneous areas that were present within the building. The suspect asbestos materials were given a homogeneous identification number based on color and texture of the material. A list of homogeneous area numbers of the materials encountered is included with the Asbestos Result Table in Section 3.1. Each material was given an identification (ID) number. The material ID number correlates with the ID number found on the sample location plan in Attachment C. Roof core profiles are included in Attachment B.

Occupational Safety and Health Administration (OSHA) and 40 CFR 763 Subpart E – Asbestos Hazard Emergency Response Act (AHERA) bulk sampling protocols were followed.

Three (3) samples of a homogenous surfacing material in quantities of 1,000 Square Feet (SF) or less were collected.

- Five (5) samples of a homogenous surfacing material in quantities greater than 1,000 SF but less than 5,000 SF were collected.
- > Seven (7) samples of a homogenous surfacing material in quantities greater than 5,000 SF were collected.
- Three (3) samples of Thermal System Insulation (TSI) material were collected.
- > Two (2) samples of each miscellaneous material were collected.

The suspect asbestos containing materials were extracted using various hand tools, containerized and labeled with unique sample identification numbers. Samples were submitted to the laboratory using standard chain of custody protocols.

Paradigm Environmental Services, Inc. was the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) approved laboratory used for analysis. A copy of Paradigm's credentials is located in Attachment A.

Friable samples were analyzed using NYS ELAP Method 198.1, Polarized Light Microscopy (PLM). Non-friable organically bound (NOB) samples were analyzed using NYS ELAP Method 198.6 (PLM) and, if found to be negative, NYS ELAP Method 198.4, Transmission Electron Microscopy (TEM). All Samples were analyzed via stop positive protocols meaning that once a positive sample of a series was found, the other samples were not analyzed.

Ninety-five (95) bulk samples were collected from the building as part of this project.

The sample identification number indicated on the Bulk Sample Location Plan corresponds to the homogeneous ID numbers which are also located on the laboratory analytical report and the chain of custody forms. The Bulk Sample Location Plan, laboratory analytical report and the chain of custody forms are included in Attachment C.

2.2 <u>Lead Paint</u>

Lu Engineers conducted a lead-based paint inspection for this project on November 7, 2024.

A total of thirteen (13) bulk paint samples were collected from several painted surfaces. The sample locations are indicated on the Sample Location Plans included in Attachment C. The sample number indicated on the plans corresponds to the sample numbers on the laboratory analytical report and the chain of custody which are included in Attachment C.

The samples were submitted to Paradigm Environmental Services, Inc., an ELAP-certified laboratory. A copy of Paradigm's laboratory credentials is included in Attachment A. Results of Lu Engineer's visual assessment are included in Section 3.2.

2.3 PCB Caulk

Six (6) suspect PCB caulks were sampled during Lu Engineer's site investigation. The sample locations are indicated on the Sample Location Plans included in Attachment C. The sample number indicated on the plans corresponds to the sample numbers on the laboratory analytical report and the chain of custody which are included in Attachment C.

The samples were submitted to EMSL Analytical, Inc, an NYSDOH certified laboratory. Bulk PCB samples were analyzed using EPA Method 8082. Paradigm's laboratory credentials are included in Attachment A.

3.0 ANALYTICAL RESULTS

3.1 <u>Asbestos Results</u>

As defined by the New York State Department of Labor (NYSDOL) 12 NYCRR 56, a sample is considered to be asbestos containing if it contains greater than 1% asbestos by weight based on laboratory analysis. The Occupational Safety and Health Administration (OSHA) 29 CFR 1926.1101 requires specific work practices and prohibitions if asbestos in any quantity, i.e., trace <1%, is present in potentially impacted materials.

A list of Homogeneous Areas (HA) identified for the building area surveyed is included below. The **bold** and *italicized* HA description indicates that the material is positive, based on the sample results.

Homogeneous Area No. (HA)	Description	Condition	Friability	Asbestos Content	
1	Grey CMU Block	Intact	NF	NAD	
2	Grey Mortar	Intact	NF	NAD	
3	White Paint	Poor	NF	NAD	
4	Grey/Black Paint	Poor	NF	NAD	
5	White Caulk	Poor			
6	Grey/White/Black/Orange Paint	Poor	NF	NAD	
7	White Exterior Window Glaze	Poor	NF	Chrysotile 1.5%	
8	Red Brick	Intact	NF	NAD	
9	Grey Mortar	Intact	NF	NAD	
10	Black Paint	Poor	NF	NAD	
11	Grey Paint	Poor	NF	NAD	
12	White Caulk	Poor	NF	NAD	
13	Grey Paint	Poor	NF	NAD	
14	Grey Caulk	Poor	NF	NAD	
15	Black Roofing Material	Poor	NF	Chrysotile 1.2%	

Homogeneous Area No. (HA)	Description	Condition	Friability	Asbestos Content
16	Plack Poofing Paper	Poor	NF	Trace Chrysotile
10	Black Roofing Paper	POOI	INF	<1.0%
17	Black Tar	Poor	NF	NAD
18	Black/Blue Paint	Poor	NF	NAD
19	Grey Paint	Poor	NF	NAD
20	Multi-Colored Paint	Poor	NF	NAD
21	Brown Padding Material	Poor	NF	NAD
22	Tan Adhesive	Poor	NF	NAD
23	White Insulation Material	Poor	NF	NAD
24	Black Roofing Material	Poor	NF	NAD
25	Black Waterproof Membrane	Poor	NF	NAD
26	Tan Cloth Wire Cover	Poor	NF	NAD
27	Black Wire Insulation	Poor	NF	NAD
28	Grey/Tan Duct Tape	Poor	NF	NAD
29	White Duct Insulation	Poor	F	Chrysotile 67%
30	Tan Cloth Pipe Cover	Poor	NF	NAD
31	Air Cell Pipe Insulation	Poor	F	Chrysotile 67%
32	Brown Paint	Poor	NF	Trace Chrysotile <1.0%
33	White Window Glaze	Poor	NF	Actinolite/ Tremolite <1.0%
34	White Paint	Poor	NF	NAD
35	White Paint	Poor	NF	NAD
36	White Plaster Skim Coat	Poor	F	NAD
37	Grey Plaster Rough Coat	Poor	F	Chrysotile 1.9%
38	Blue Paint	Poor	NF	NAD
39	Red Clay Shingle with Blue Glaze	Intact	NF	NAD
40	White Window Glaze	Poor	NF	NAD
41	Brown Peg Board	Poor	NF	NAD
42	Brown Door Insulation	Intact	NF	NAD

NAD – No Asbestos Detected F – Friable; NF – Non-Friable

3.2 <u>Lead Paint Results</u>

According to the United States Environmental Protection Agency (EPA), paint is considered lead-based if the concentration is equal to or greater than 0.5% by weight.

According to the Occupational Safety and Health Administration (OSHA), lead means metallic lead, all inorganic lead compounds, and organic soaps with any concentrations of lead. Therefore, all samples collected are considered lead containing per OSHA standards.

Lu Engineers collected a total of thirteen (13) bulk lead paint samples from various locations of the building. The samples were submitted to Paradigm Environmental Services, Inc., an ELAP-certified laboratory. A list of the areas sampled for this survey is included below. The **bold** and *italicized* description indicates that the material is positive for lead per EPA standards, based on the sample results.

Sample No.	Description	Lead Conc. (% by Wt.)				
LP-3	White Exterior Paint	0.0354%				
LP-4	Grey/Black Exterior Paint	0.0222%				
LP-6	Grey/White/Black/Orange Exterior Paint	2.19%				
LP-10	Black Exterior Paint	1.80%				
LP-11	Grey Exterior Paint	4.55%				
LP-13	Grey Exterior Paint	0.123%				
LP-18	Black/Blue Interior Paint	0.186%				
LP-19	Grey Interior Paint	0.318%				
LP-20	Multi-Colored Interior Paint	1.06%				
LP-32	Brown Interior Paint	3.89%				
LP-34	White Interior Paint	1.33%				
LP-35	White Interior Paint	2.21%				
LP-38	Blue Interior Paint	4.85%				

3.3 PCB Caulk Results

EPA defines PCB bulk waste, "as waste derived from manufactured products containing PCBs in a non-liquid state, at any concentration where the concentration at the time of designation for disposal was > 50 ppm PCBs". Solid wastes containing 50 ppm by weight or greater are listed hazardous wastes in New York State (6 NYCRR Part 371.4(C)).

The following table summarizes the PCB sampling results. A **bold and italicized** sample number indicates that the building material has a PCB concentration that is equal to or greater than 50 ppm based on analytical results.

Sample No.	Description	PCB Content (ppm)	Asbestos Containing
PCB-5	White Caulk	ND	No
PCB-7	White Window Glaze	ND	Yes
PCB-12	White Caulk	ND	No
PCB-14	Grey Caulk	ND	No
PCB-33	White Window Glaze	ND	No
PCB-40	White Window Glaze	ND	No

ND = non-detected

4.0 ASBESTOS MATERIALS AND APPROXIMATE QUANTITIES

Asbestos exists throughout the inspected areas. Based on the analytical results, the following table identifies the Homogeneous Areas that contain asbestos along with the material description and approximate quantity.

Homogeneous Area No. (HA)	Description	Approximate Quantity
7	White Exterior Window Glaze – Note ¹	160 LF
15	Black Roofing Material	16 SF
29	White Duct Insulation	2 LF
31	Air Cell Pipe Insulation – Note ²	2 LF
37	Grey Plaster Rough Coat	392 SF

SF = Square Feet

Note¹ – Asbestos containing white window glaze exists on both interior and exterior of windows located on the north and east walls of the "Front Room". Three (3) windows total. (53 LF of ACM per window).

Note² – HA #31 is described on the laboratory analytical report as "light grey" and "white". All three (3) samples of this material were homogeneous and sampled from the same pipe, located on the south wall of the attic space.

5.0 LIMITATIONS OF THE INVESTIGATION

This report has been prepared for the exclusive use of the client. This report relies on information supplied by the building owner, employees, tenants and other sources of information. Lu Engineers has prepared this report in accordance with generally accepted practices within the industry.

This report identifies and assesses the location, quantity, and condition of materials that were accessible and visible at the time of sampling. The condition of the suspect materials is based on the actual inspection date. The quantities indicated in the report are based on the visual inspection and are only estimates of the material present.

This survey is not intended to be an abatement design. Per NYCRR 56, an abatement design must be completed by a certified Project Designer.

This survey is intended to be a pre-renovation survey. Destructive measures were taken with attempts to identify materials that may not be immediately visible.

LF = Linear Feet

6.0 RECOMMENDATIONS

6.1 <u>Asbestos Containing Materials</u>

Asbestos containing materials have been identified as part of this assessment as shown in Section 4.0. The locations of asbestos containing materials and a summary of quantities are included in Attachment D.

In accordance with 12 NYCRR 56, no renovation or demolition work shall be commenced by any owner or agent prior to completion of asbestos abatement performed by a licensed asbestos abatement contractor. NYSDOL regulations require that the asbestos containing material that will be disturbed by the renovation or demolition be removed prior to any disturbance of the material.

If suspect asbestos containing materials not identified in this asbestos survey report are discovered during the demolition and/or renovation process; it is required that the presence, location and quantity of newly discovered material, be conveyed within twenty-four (24) hours of discovery to the building owner or their representative. All activities must cease in the area where the presumed asbestos containing material or suspect miscellaneous ACM is found, until a licensed asbestos contractor appropriately assesses and manages the discovered materials.

6.2 <u>Lead Paint</u>

According to the United States Environmental Protection Agency (USEPA), paint is considered lead based if the concentration is equal to or greater than 0.5% by weight. The Occupational Safety and Health Administration (OSHA) Regulation in 29 CFR 1926.62 considers any amount of lead in paint to be of concern. The regulation states that the employer shall assure that no employee is exposed to lead concentrations greater than fifty micrograms per cubic meter (50 mg/m³) of air averaged over an eight-hour period.

Lead-based Paint was identified as part of this survey that will require special handling and disposal when removed. A lead worker protection specification, consistent with OHSA regulations, is recommended for the project.

6.3 PCB Caulk

Caulks containing 50 parts per million (ppm) by weight (on a dry weight basis for other than liquid wastes) or greater of PCBs may be listed as hazardous waste in accordance with New York State Department of Conservation regulations (6 NYCRR Part 371). PCB wastes are also regulated by EPA in the 40 CFR Part 761 regulations.

There were no PCB containing caulks identified as part of this survey.

ATTACHMENT A

License and Certifications

ASBESTOS, LEAD PAINT, and PCB CAULK SURVEY

VACANT STRUCTURE 52-54 CANAL STREET LYONS, NEW YORK

WE ARE YOUR DOL

DIVISION OF SAFETY & HEALTH LICENSE AND CERTIFICATE UNIT, STATE OFFICE CAMPUS, BLDG. 12, ALBANY, NY 12226

ASBESTOS HANDLING LICENSE

Joseph C. Lu Engineering, P.C. 280 E. Broad Street, Suite 170, Rochester, NY, 14604

License Number: 29286

License Class: RESTRICTED Date of Issue: 05/01/2024

Expiration Date: 05/31/2025

Duly Authorized Representative: Mitchell Smith

This license has been issued in accordance with applicable provisions of Article 30 of the Labor Law of New York State and of the New York State Codes, Rules and Regulations (12 NYCRR Part 56). It is subject to suspension or revocation for a (1) serious violation of state, federal or local laws with regard to the conduct of an asbestos project, or (2) demonstrated lack of responsibility in the conduct of any job involving asbestos or asbestos material.

This license is valid only for the contractor named above and this license or a photocopy must be prominently displayed at the asbestos project worksite. This license verifies that all persons employed by the licensee on an asbestos project in New York State have been issued an Asbestos Certificate, appropriate for the type of work they perform, by the New York State Department of Labor.

Amy Phillips, Director
For the Commissioner of Labor

VODI CIO

NEW YORK STATE DEPARTMENT OF HEALTH WADSWORTH CENTER

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10958

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. STEVE DEVITO
PARADIGM ENVIRONMENTAL SERVICES INC
179 LAKE AVENUE
ROCHESTER, NY 14608

is hereby APPROVED as an Environmental Laboratory for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved subcategories and/or analytes are listed below:

Miscellaneous

Asbestos in Friable Material Item 198.1 of Manual

EPA 600/M4/82/020

Asbestos in Non-Friable Material-PLM Item 198.6 of Manual (NOB by PLM)

Asbestos in Non-Friable Material-TEM Item 198.4 of Manual

Lead in Dust Wipes EPA 6010C
Lead in Paint EPA 6010C

Sample Preparation Methods

EPA 3050B

Serial No.: 68645

NEW YORK STATE DEPARTMENT OF HEALTH WADSWORTH CENTER

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. OWEN MCKENNA EMSL ANALYTICAL INC 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077 NY Lab Id No: 10872

is hereby APPROVED as an Environmental Laboratory for the category ENVIRONMENTAL ANALYSES AIR AND EMISSIONS
All approved subcategories and/or analytes are listed below:

Chlorinated Hydrocarbon Pesticides

Chlordane Total

NIOSH 5510

Metals I

Lead, Total

NIOSH 7082

Metals II

Mercury, Total

NIOSH 6009

Miscellaneous

Asbestos

40 CFR 763 APX A No. III

YAMATE, AGARWAL GIBB

NIOSH 7402

Fibers

NIOSH 7400 A RULES

Particulate Matter

40 CFR PART 50 APP B

40 CFR PART 50 APP J (PM10)

Polychlorinated Biphenyls

PCBs and Aroclors

NIOSH 5503

Sample Preparation Methods

40 CFR PART 50 APP G

Serial No.: 68608

280 East Broad Street, Suite 170 Rochester, New York 14604

ROOM 161A BUILDING 12 STATE OFFICE CAMPUS ALBANY NY 12226

> Ryan Dillard C - Air Sampling Technician D - Inspector H - Project Monitor

Lu Engineers

280 East Broad Street, Suite 170 Rochester, New York 14604

STATE OF NEW YORK - DEPARTMENT OF LABOR ASBESTOS CERTIFICATE

EDWIN GONZALEZ CLASS(EXPIRES) D INSP (08/25) H PM (08/24) C ATEC (08/24)

CERT# 2-61D4S-SHAB

MUST BE CARRIED ON ASBESTOS PROJECTS

1107C011019000100010101010101

01213 007197689 86

IF FOUND, RETURN TO: NYSDOL - L&C UNIT ROOM 161A BUILDING 12 STATE OFFICE CAMPUS ALBANY NY 12226

C – Air Sampling Technician
D – Inspector
H – Project Monitor

ATTACHMENT B

Roof Core Profiles

ASBESTOS, LEAD PAINT, and PCB CAULK SURVEY

VACANT STRUCTURE 52-54 CANAL STREET LYONS, NEW YORK

ROOF CORE PROFILES

Pre-Demolition RBM Survey 52-54 Canal Street, Lyons, New York December 2024

Core #1 – Vertical Roof – 2" Depth

- Clay Roof Shingle (HA #39)
- Black Roofing Paper (HA #16)
- Wood Deck
- Black Rolled Roofing (Under Metal Siding on South Gable) (HA #15)

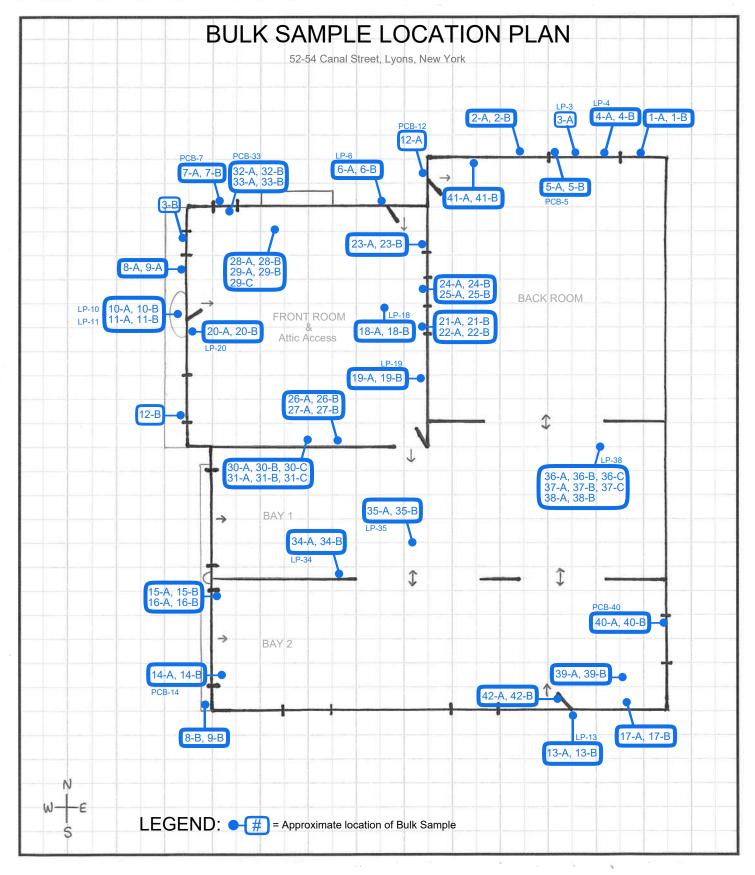
Core #2 - Horizontal Roof - 2" Depth

- Metal Roof
- Black Waterproof Membrane (HA #25)
- Black Roofing Material (HA #24)
- Plywood

Lu Project # 50514-07

Note:

1. **Bold & italicized** layers indicate materials are positive for asbestos.


ATTACHMENT C

Sample Location Plans, Analytical Reports and Chain of Custody Forms

ASBESTOS, LEAD PAINT, and PCB CAULK SURVEY

VACANT STRUCTURE 52-54 CANAL STREET LYONS, NEW YORK

PLM & TEM BULK ASBESTOS ANALYSIS REPORT via NYSDOH ELAP Method 198.1,198.4 and 198.6

Client:

Lu Engineers

Job No: 8844-24

Location:

Pre-Demolition RBM Survey

Page: 1 of 20

52-54 Canal Street, Lyons, New York

Sample Date: 11/7/2024

Reissued: 11/19/2024

Sample Date: 11/1/2024 Reissued: 11/19/2024										
				PLM Asbestos	PLM	N	TEM Asbestos	TEM	PLM	Non-
				Fibers Type &	Total	0	Fibers Type &	Total	Non-Asbestos	Fibrous
Client ID	Lab ID	Sampling Location	Description	Percentage	Asbestos	В	Percentage	Asbestos	Fibers Type &	Matrix
									Percentage	Material
										%
1-A	77411	North Exterior Wall	Gray CMU Block	None Detected	0%	П	Not Required	N/A	None Detected	100%
1-B	77412	North Exterior Wall	Gray CMU Block	None Detected	0%		Not Required	N/A	None Detected	100%
2-A	77413	North Exterior Wall	Gray Mortar	None Detected	0%		Not Required	N/A	None Detected	100%
2-B	77414	North Exterior Wall	Gray Mortar	None Detected	0%		Not Required	N/A	None Detected	100%
3-A	77415	North Exterior Wall	White Paint	Inconclusive	0%	١. ا	None Detected	<1.0%	None Detected	100%
				No Asbestos Detected		√				
3-B	77416	West Exterior on	White Paint	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
		Window Sill		No Asbestos Detected		 				
	55/45									
4-A	77417	North Exterior on	Gray/Black Paint	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
		Concrete Window Sill		No Asbestos Detected		 				
1.5	77440	N. J. P.	g (D) 1 0 i							
4-B	77418	North Exterior on Concrete Window Sill	Gray/Black Paint	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
		Concrete William 311		No Asbestos Detected		V				
	77446	N 1 2 1 2 1								
5-A	77419		White Caulk	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
		Metal Window Frame and CMU Block	li .	No Asbestos Detected		V				
		and GMO DIOCK		Detected						
5-B	77420	North Exterior Between	White Caulk	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
		Metal Window Frame		No Asbestos		v				
		and CMU Block		Detected						
							,			

KEY TO NOB COLUMN SYMBOLS

No Symbol in the NOB column denotes sample analyzed by ELAP Method 198.1 (PLM).

V NOB (non-friable organically bound)denotes material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

V denotes material analyzed by ELAP Method 198.6 (PLM) per NYSDOH. This Method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite.

denotes friable material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

X denotes sample prepped only by ELAP Method 198.6.

** Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos containing.

PLM Bulk Asbestos Analysis by New York State Department of Health, ELAP Method 198.1,198.4 and 198.6 ("Polarized Light Microscopy and Transmission Electron Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples.") or EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200530-0).

MVUAU)

Lab Code 200530-0 for PLM Analysis

Microscope: Olympus BH-2 #211874

PLM Analyst: T. Bush

Date of Analysis: 11/15/2024

Microscope: JEOL-100CX-II #EM-156094-87

TEM Analyst: A. Voldbakken Date of Analysis: 11/18/2024

Laboratory Results Approved By Asbestos Technical Director or Designee

Fernanda Weinman

ELAP ID No.: 10958

PLM & TEM BULK ASBESTOS ANALYSIS REPORT via NYSDOH ELAP Method 198.1,198.4 and 198.6

Client:

Lu Engineers

Job No: 8844-24

Location:

Pre-Demolition RBM Survey

Page: 2 of 20

52-54 Canal Street, Lyons, New York

Sample Date:

11/7/2024

Reissued: 11/19/2024

Sample Bate. 11/7/2024 Reissued: 11/19/2024										
				PLM Asbestos	PLM	N		TEM	PLM	Non-
				Fibers Type &	Total	0	Fibers Type &	Total	Non-Asbestos	Fibrous
Client ID	Lab ID	Sampling Location	Description	Percentage	Asbestos	В	Percentage	Asbestos	Fibers Type &	Matrix
					l'				Percentage	Material
										%
6-A	77421	Northwest Exterior	Gray/White/	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
		Door	Black/Orange Paint	No Asbestos		V				
				Detected		Ĭ.				
6-B	77422	Northwest Exterior	Gray/White/	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
		Door	Black/Orange Paint	No Asbestos		V				
				Detected		•				
7-A	77423	Northwest Window	White Window	Chrysotile 1.5%	1.5%		Not Required	N/A	None Detected	98.5%
		Exterior	Glaze	,		#		,		10.070
						"				
7-B	77424	Northwest Window	White Window	STOP	POSITIVE		SAMPLE	NOT	ANALYZED	N/A
		Exterior	Glaze		10011112	x	571111 20		111111111111111111111111111111111111111	.,,,,,
						^				
8-A	77425	Northwest Exterior Wall	Red Brick	None Detected	0%	_	Not Required	N/A	None Detected	100%
0-11		The same of Enterior Wall	The Brief	Hone betteted	0,0		Not Required	ПУЛ	None Detected	10070
8-B	77426	Southwest Exterior Wall	Red Brick	None Detected	0%		Not Required	N/A	None Detected	100%
О-В	,,,,	Boothiwest Exterior Wall	Ned Brick	None Detected	0.70		Not Required	N/A	None Detected	100%
9-A	77427	Northwest Exterior Wall	Crou Morton	None Detected	0%	H	Not Required	AL/A	None Detected	100%
9-A	//42/	MOLITIMEST EXTELLOR MAIL	Gray Mortar	None Detected	0%		Not Kequirea	N/A	None Detected	100%
0 B	77420	Court of E 4 1 144 II	C N .		201					
9-B	//428	Southwest Exterior Wall	Gray Mortar	None Detected	0%		Not Required	N/A	None Detected	100%
						l				
10-A		J.	Black Paint	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
		Railing		No Asbestos		√				
				Detected						
10-B	77430	Main Entrance on Metal	Black Paint	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
		Railing		No Asbestos		lν l				
				Detected						
VEV TO NOD (-				

KEY TO NOB COLUMN SYMBOLS

No Symbol in the NOB column denotes sample analyzed by ELAP Method 198.1 (PLM).

v NOB (non-friable organically bound)denotes material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

ϔ denotes material analyzed by ELAP Method 198.6 (PLM) per NYSDOH. This Method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite.

denotes friable material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

X denotes sample prepped only by ELAP Method 198.6.

* Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos

PLM Bulk Asbestos Analysis by New York State Department of Health, ELAP Method 198.1, 198.4 and 198.6 ("Polarized Light Microscopy and Transmission Electron Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples.") or EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200530-0).

Lab Code 200530-0 for PLM Analysis

Microscope: Olympus BH-2 #211874

PLM Analyst: T. Bush Date of Analysis: 11/15/2024 Microscope: JEOL-100CX-II #PM-156094-87

TEM Analyst: A. Voldbakken Date of Analysis: 11/18/2024

Laboratory Results Approved By: Asbestos Technical Director or Designee

Fernanda Weinman

ELAP ID No.: 10958

PLM & TEM BULK ASBESTOS ANALYSIS REPORT via NYSDOH ELAP Method 198.1,198.4 and 198.6

Client:

Lu Engineers

Pre-Demolition RBM Survey

Job No: 8844-24

Page: 3 of 20

Location:

52-54 Canal Street, Lyons, New York

Sample Date:

11/7/2024

Reissued: 11/19/2024

		r	Ψ-			_		eissuea:		
				PLM Asbestos Fibers Type &	PLM Total	N O	TEM Asbestos Fibers Type &	TEM Total	PLM Non-Asbestos	Non- Fibrou
Client ID	Lab ID	Sampling Location	Description	Percentage	Asbestos	В	Percentage	Asbestos	Fibers Type & Percentage	Matrix Materia
										%
11-A		Main Entrance on Awning	Gray Paint	Inconclusive No Asbestos Detected	0%	V	None Detected	<1.0%	None Detected	100%
11-B	77432	Main Entrance on Awning	Gray Paint	Inconclusive No Asbestos Detected	0%	V	None Detected	<1.0%	None Detected	100%
12-A	77433	North Exterior Door Between Metal Frame and CMU	White Caulk	Inconclusive No Asbestos Detected	0%	V	None Detected	<1.0%	None Detected	100%
12-B	77434	West Exterior Bay Window	White Caulk	Inconclusive No Asbestos Detected	0%	V	None Detected	<1.0%	None Detected	100%
13-A	77435	Southeast Exterior Door	Gray Paint	Inconclusive No Asbestos Detected	0%	ν	None Detected	<1.0%	None Detected	100%
13-B	77436	Southeast Exterior Door	Gray Paint	Inconclusive No Asbestos Detected	0%	V	None Detected	<1.0%	None Detected	100%
14-A		On Roof at Concrete Ledge Joint	Gray Caulk	Inconclusive No Asbestos Detected	0%	V	None Detected	<1.0%	None Detected	100%
14-B		On Roof at Concrete Ledge Joint	Gray Caulk	Inconclusive No Asbestos Detected	0%	٧	None Detected	<1.0%	None Detected	100%
15-A	77439		Black Roofing Material	Chrysotile 1.2%	1.2%	v	Not Required	N/A	None Detected	98.8%
15-B	77440		Black Roofing Material	STOP	POSITIVE	х	SAMPLE	NOT	ANALYZED	N/A

KEY TO NOR COLUMN SYMBOLS

No Symbol in the NOB column denotes sample analyzed by ELAP Method 198.1 (PLM).

V NOB (non-friable organically bound)denotes material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

ϔ denotes material analyzed by ELAP Method 198.6 (PLM) per NYSDOH. This Method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite.

denotes friable material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

X denotes sample prepped only by ELAP Method 198.6.

Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos

PLM Bulk Asbestos Analysis by New York State Department of Health, ELAP Method 198.1, 198.4 and 198.6 ("Polarized Light Microscopy and Transmission Electron Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples or EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200530-0).

Lab Code 200530-0 for PLM Analysis

Microscope: Olympus BH-2 #211874

PLM Analyst: T. Bush Date of Analysis: 11/15/2024 Microscope: JEOL-100CX-II #EM-156094-87

TEM Analyst: A. Voldbakken

Date of Analysis: 11/18/2024

Laboratory Results Approved By: **Asbestos Technical Director or Designee**

Fernanda Weinman

ELAP ID No.: 10958

PLM & TEM BULK ASBESTOS ANALYSIS REPORT via NYSDOH ELAP Method 198.1,198.4 and 198.6

Client:

Lu Engineers

Job No: 8844-24

Location:

Pre-Demolition RBM Survey

Page: 4 of 20

52-54 Canal Street, Lyons, New York

Sample Date:

11/7/2024

Reissued: 11/19/2024

Sample L	ate:	11/7/2024					Н	teissued:	eissued: 11/19/2024			
Client ID	Lab ID	. 0	Description	PLM Asbestos Fibers Type & Percentage	PLM Total Asbestos	N O B	TEM Asbestos Fibers Type & Percentage	TEM Total Asbestos	PLM Non-Asbestos Fibers Type & Percentage	Non- Fibrous Matrix Material %		
16-A	77441	Under Metal Roof Deck	Black Roofing Paper	Inconclusive Trace Chrysotile Detected	<1.0%	V	Trace Chrysotile <1.0%	<1.0%	None Detected	100%		
16-B	77442	Under Metal Roof Deck	Black Roofing Paper	Inconclusive No Asbestos Detected	0%	v	None Detected	<1.0%	None Detected	100%		
17-A		On Concrete Roof Ledge on Patch Repair	Black Tar	Inconclusive No Asbestos Detected	0%	٧	None Detected	<1.0%	None Detected	100%		
17-B	77444	On Concrete Roof Ledge on Patch Repair	Black Tar	Inconclusive No Asbestos Detected	0%	v	None Detected	<1.0%	None Detected	100%		
KEN TO NOB	OLUMN	CVMPOLC				_						

KEY TO NOB COLUMN SYMBOLS

No Symbol in the NOB column denotes sample analyzed by ELAP Method 198.1 (PLM).

v NOB (non-friable organically bound)denotes material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

V denotes material analyzed by ELAP Method 198.6 (PLM) per NYSDOH. This Method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite.

denotes friable material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

X denotes sample prepped only by ELAP Method 198.6.

** Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos

PLM Bulk Asbestos Analysis by New York State Department of Health, ELAP Method 198.1, 198.4 and 198.6 ("Polarized Light Microscopy and Transmission Electron Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples") or EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200530-0).

IN A COST

Lab Code 200530-0 for PLM Analysis

Microscope: Olympus BH-2 #221797

PLM Analyst: K. Acosta

Date of Analysis: 11/15/2024

Microscope: JEOL-100CX-II #EM-156094-87

TEM Λnalyst: A. Voldbakken

Date of Analysis: 11/18/2024

Laboratory Results Approved By: Asbestos Technical Director or Designee

Fernanda Weinman

ELAP ID No.: 10958

PLM & TEM BULK ASBESTOS ANALYSIS REPORT via NYSDOH ELAP Method 198.1,198.4 and 198.6

Client:

Lu Engineers

Job No: 8843-24

Location:

Pre-Demolition RBM Survey

Page: 5 of 20

52-54 Canal Street, Lyons, New York

Sample Date: 11/

11/7/2024

Reissued: 11/19/2024

Sumple Date. 11/1/2021								F		
	l)			PLM Asbestos	PLM	N		TEM	PLM	Non-
				Fibers Type &	Total	0	Fibers Type &	Total	Non-Asbestos	Fibrous
Client ID	Lab ID	Sampling Location	Description	Percentage	Asbestos	B	Percentage	Asbestos	Fibers Type &	Matrix
									Percentage	Material
										%
18-A	77356	On Concrete Floor Main	Black/Blue Paint	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
		Entrance / Front Room		No Asbestos		√				
				Detected						
18-B	77357	On Concrete Floor Main	Black/Blue Paint	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
		Entrance / Front Room		No Asbestos	1	V				
				Detected						
19-A	77358	Front Room East Wall	Gray Paint	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
				No Asbestos		l√				
				Detected						
19-B	77359	Front Room East Wall	Gray Paint	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
				No Asbestos	1	V				
				Detected						
20-A	77360	Front Room West Wall	Multi-Colored Paint	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
	1			No Asbestos		V				
	797			Detected						
20-B	77361	Front Room West Wall	Multi-Colored Paint	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
				No Asbestos		V				
				Detected						
21-A	77362	Interior Windowsill	Brown Fibrous	None Detected	0%		Not Required	N/A	Cellulose 99%	1%
		Front Room East Wall	Padding Material				•	' I		
			_							
21-B	77363	Interior Windowsill	Brown Fibrous	None Detected	0%		Not Required	N/A	Cellulose 99%	1%
21.0		Front Room East Wall	Padding Material		0,0			,	denai050 7770	1,0
			Ĭ							
22-A	77364	Interior Windowsill	Tan Adhesive	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
22-M		Front Room East Wall	Tan Adijestve	No Asbestos	0 70	.,	Mone Detected	-1,0 /0	Mone Detected	10070
				Detected		V				
22 D	77365	Interior Windowsill	Tan Adhesive	Inconclusive	0%		None Detected	<1.0%	None Detected	100%
22-B		Front Room East Wall	I all Autlesive	No Asbestos	0%	١, ا	None Detected	<1.U%0	Mone Defected	100%
		TOTAL ROOM East Wall		Detected		√				
FV TO NOR				Detected		L.,				

KEY TO NOB COLUMN SYMBOLS

No Symbol in the NOB column denotes sample analyzed by ELAP Method 198.1 (PLM).

v NOB (non-friable organically bound)denotes material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

V denotes material analyzed by ELAP Method 198.6 (PLM) per NYSDOH. This Method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite.

denotes friable material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

X denotes sample prepped only by ELAP Method 198.6.

** Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos containing.

PLM Bulk Asbestos Analysis by New York State Department of Health, ELAP Method 198.1,198.4 and 198.6 ("Polarized Light Microscopy and Transmission Electron Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples.") or EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200530-0).

Lab Code 200530-0 for PLM Analysis

Microscope: Olympus BH-2 #221797

PLM Analyst: K. Acosta

Date of Analysis: 11/15/2024

Microscope: JEOL-100CX-II #EM-156094-87

TEM Analyst: A. Voldbakken

Date of Analysis: 11/18/2024

Laboratory Results Approved By:
Asbestos Technical Director or Designee

Fernanda Weinman

ELAP ID No.: 10958

PLM & TEM BULK ASBESTOS ANALYSIS REPORT via NYSDOH ELAP Method 198.1,198.4 and 198.6

Client:

Lu Engineers

Job No: 8843-24

Location:

Pre-Demolition RBM Survey

Page: 6 of 20

52-54 Canal Street, Lyons, New York

Sample Date:

11/7/2024

Reissued: 11/19/2024

Sample Date: 11///2024 Reissued: 11/19/2024										
CV			_	PLM Asbestos Fibers Type &	PLM Total	N O	Fibers Type &	TEM Total	PLM Non-Asbestos	Non- Fibrous
Client ID	Lab ID	Sampling Location	Description	Percentage	Asbestos	В	Percentage	Asbestos	Fibers Type & Percentage	Matrix Materia %
23-A	77366	Front Room East Wall on Heating Duct and Brick	White Insulation Material	None Detected	0%		Not Required	N/A	None Detected	100%
23-В	77367	Front Room East Wall on Heating Duct and Brick	White Insulation Material	None Detected	0%		Not Required	N/A	None Detected	100%
24-A	77368	On Top of Wood Deck Taken From Interior Front Room	Black Roofing Material	Inconclusive No Asbestos Detected	0%	V	None Detected	<1.0%	None Detected	100%
24-B	77369	On Top of Wood Deck Taken From Interior Front Room	Black Roofing Material	Inconclusive No Asbestos Detected	0%	٧	None Detected	<1.0%	None Detected	100%
25-A	77370	On Top of Wood Deck on Top of HA #24	Black Waterproof Membrane	Inconclusive No Asbestos Detected	0%	V	None Detected	<1.0%	None Detected	100%
25-B		On Top of Wood Deck on Top of HA #24	Black Waterproof Membrane	Inconclusive No Asbestos Detected	0%	V	None Detected	<1.0%	None Detected	100%
26-A		Front Room South Wall in Fuse Box	Tan Fibrous Cloth Wire Cover	None Detected	0%		Not Required	N/A	Cellulose 100%	0%
26-B		Front Room South Wall in Fuse Box	Tan Fibrous Cloth Wire Cover	None Detected	0%		Not Required	N/A	Cellulose 100%	0%
27-A		Front Room South Wall in Fuse Box Under HA #26	Black Wire Insulation	Inconclusive No Asbestos Detected	0%	V	None Detected	<1.0%	None Detected	100%
27-В			Black Wire Insulation	Inconclusive No Asbestos Detected	0%	V	None Detected	<1,0%	None Detected	100%

KEY TO NOB COLUMN SYMBOLS

No Symbol in the NOB column denotes sample analyzed by ELAP Method 198.1 (PLM).

v NOB (non-friable organically bound)denotes material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

V denotes material analyzed by ELAP Method 198.6 (PLM) per NYSDOH. This Method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite.

denotes friable material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

X denotes sample prepped only by ELAP Method 198.6.

** Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos

PLM Bulk Asbestos Analysis by New York State Department of Health, ELAP Method 198.1,198.4 and 198.6 ("Polarized Light Microscopy and Transmission Electron Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples.") or EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200530-0).

Lab Code 200530-0 for PLM Analysis

Microscope: Olympus BH-2 #211874

PLM Analyst: T. Bush

Date of Analysis: 11/18/2024

Microscope: JEOL-100CX-II #EM-156094-87

TEM Analyst: A. Voldbakken

Date of Analysis: 11/18/2024

Laboratory Results Approved By:
Asbestos Technical Director or Designee

Fernanda Weinman

ELAP ID No.: 10958

PLM & TEM BULK ASBESTOS ANALYSIS REPORT via NYSDOH ELAP Method 198.1,198.4 and 198.6

Client: Location: Lu Engineers

Pre-Demolition RBM Survey

Job No: 8843-24 Page: 7 of 20

52-54 Canal Street, Lyons, New York

Sample Date:

11/7/2024

Reissued: 11/19/2024

Sample L	atc.	11/7/2024						eissueu:	11/19/2024	
Client ID	Lab ID	Sampling Location	Description	PLM Asbestos Fibers Type & Percentage	PLM Total Asbestos	N O B	TEM Asbestos Fibers Type & Percentage	TEM Total Asbestos	PLM Non-Asbestos Fibers Type & Percentage	Non- Fibrous Matrix Materia
						L				%
28-A	77376	Attic on Air Duct	Gray/Tan Fibrous Duct Tape	None Detected	0%		Not Required	N/A	Synthetic 95%	5%
28-B	77377	Attic on Air Duct	Gray/Tan Fibrous Duct Tape	None Detected	0%		Not Required	N/A	Synthetic 95%	5%
29-A	77378	Attic on Heat Duct	White Fibrous Duct Insulation	Chrysotile 67%	67%		Not Required	N/A	None Detected	33%
29-В	77379	Attic on Heat Duct	White Duct Insulation	STOP	POSITIVE		SAMPLE	NOT	ANALYZED	N/A
29-C	77380	Attic on Heat Duct	White Duct Insulation	STOP	POSITIVE		SAMPLE	NOT	ANALYZED	N/A
30-A	77381	Attic South Wall on Pipe	Tan Fibrous Cloth Pipe Cover	None Detected	0%		Not Required	N/A	Cellulose 100%	0%
30-В	77382	Attic South Wall on Pipe	Tan Fibrous Cloth Pipe Cover	None Detected	0%		Not Required	N/A	Cellulose 100%	0%
30-C	77383	Attic South Wall on Pipe	Tan Fibrous Cloth Pipe Cover	None Detected	0%		Not Required	N/A	Cellulose 100%	0%
31-A	77384	Attic South Wall on Pipe	White Fibrous Air Cell Pipe Insulation	Chrysotile 67%	67%		Not Required	N/A	None Detected	33%
31-B	77385	Attic South Wall on Pipe	White Air Cell Pipe Insulation	STOP	POSITIVE		SAMPLE	NOT	ANALYZED	N/A
TEN MO NOD										

KEY TO NOB COLUMN SYMBOLS

No Symbol in the NOB column denotes sample analyzed by ELAP Method 198.1 (PLM).

V NOB (non-friable organically bound)denotes material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

V denotes material analyzed by ELAP Method 198.6 (PLM) per NYSDOH. This Method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite.

denotes friable material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

X denotes sample prepped only by ELAP Method 198.6.

** Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos

PLM Bulk Asbestos Analysis by New York State Department of Health, ELAP Method 198.1, 198.4 and 198.6 ("Polarized Light Microscopy and Transmission Electron Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples.") or EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200530-0).

TESTING TO

Lab Code 200530-0 for PLM Analysis

Microscope: Olympus BH-2 #211874

PLM Analyst: T. Bush
Date of Analysis: 11/15/2024

Microscope: JEOL-100CX-II #EM-156094-87

TEM Analyst: N/A

Date of Analysis: N/A

Laboratory Results Approved By: Asbestos Technical Director or Designee

Fernanda Weinman

ELAP ID No.: 10958

PLM & TEM BULK ASBESTOS ANALYSIS REPORT via NYSDOH ELAP Method 198.1,198.4 and 198.6

Client:

Lu Engineers

Iob No: 8843-24

Location:

Pre-Demolition RBM Survey

Page: 8 of 20

Sample Date:

52-54 Canal Street, Lyons, New York 11/7/2024

Reissued: 11/19/2024

		11/1/2024		PLM Asbestos	PLM	I at		TEM	PLM	Mor
						N	TEM Asbestos	TEM		Non-
Client ID	Lab ID	Cara-li- I a anti an	D	Fibers Type &	Total	0	Fibers Type &	Total	Non-Asbestos	Fibrou
Chent in	Labib	Sampling Location	Description	Percentage	Asbestos	В	Percentage	Asbestos	Fibers Type &	Matrix
									Percentage	Materia
04.0	7770/	Aut C il Will Br	11.1.0.41.0.11	2000	De dimilia	_				%
31-C	77386	Attic South Wall on Pipe	Pipe Insulation	STOP	POSITIVE		SAMPLE	NOT	ANALYZED	N/A
32-A	77387	Interior Window Front Room North Wall	Brown Paint	Inconclusive No Asbestos Detected	0%	V	None Detected	<1.0%	None Detected	100%
32-B	77388	Interior Window Front Room North Wall	Brown Paint	Inconclusive No Asbestos Detected	0%	V	Trace Chrysotile <1.0%	<1.0%	None Detected	100%
33-A	77389	Interior Window Front Room North Wall	White Window Glaze	Inconclusive No Asbestos Detected	0%	V	Actinolite/ Tremolite <1.0%	<1.0%	None Detected	100%
33-B	77390	Interior Window Front Room North Wall	White Window Glaze	Inconclusive No Asbestos Detected	0%	٧	Actinolite/ Tremolite <1.0%	<1.0%	None Detected	100%
34-A	77391	Bay 1 South Wall	White Paint	Inconclusive No Asbestos Detected	0%	٧	None Detected	<1.0%	None Detected	100%
34-B	77392	Bay 1 South Wall	White Paint	Inconclusive No Asbestos Detected	0%	٧	None Detected	<1.0%	None Detected	100%
35-A	77393	Bay 1 Ceiling	White Paint	Inconclusive No Asbestos Detected	0%	V	None Detected	<1.0%	None Detected	100%
35-B	77394	Bay 1 Ceiling	White Paint	Inconclusive No Asbestos Detected	0%	V	None Detected	<1.0%	None Detected	100%
36-A	77395	Bay 1 Ceiling	White Plaster Skim Coat	None Detected	0%		Not Required	N/A	None Detected	100%

KEY TO NOB COLUMN SYMBOLS

No Symbol in the NOB column denotes sample analyzed by ELAP Method 198.1 (PLM).

√ NOB (non-friable organically bound)denotes material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

V denotes material analyzed by ELAP Method 198.6 (PLM) per NYSDOH. This Method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite.

denotes friable material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

X denotes sample prepped only by ELAP Method 198.6.

* Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos

LM Bulk Asbestos Analysis by New York State Department of Health, ELAP Method 198.1, 198.4 and 198.6 ("Polarized Light Microscopy and Transmission Electron Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples," Jor EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200530-0).

Lab Code 200530-0 for PLM Analysis

ELAP ID No.: 10958

Microscope: Olympus BH-2 #211874

PLM Analyst: T. Dush Date of Analysis: 11/18/2024 Microscope: JEOL-100CX-II #EM-156094-87

TEM Analyst: A. Voldbakken Date of Analysis: 11/18/2024

Laboratory Results Approved By

Fernanda Weinman

PLM & TEM BULK ASBESTOS ANALYSIS REPORT via NYSDOH ELAP Method 198.1,198.4 and 198.6

Client:

Lu Engineers

Iob No: 8843-24

Location:

Page: 9 of 20

Pre-Demolition RBM Survey

52-54 Canal Street, Lyons, New York

Sample Date: 11/7/2024

Reissued: 11/19/2024

		1		PLM Asbestos	PLM	N	TEM Asbestos	TEM	PLM	Non-
			1	Fibers Type &	Total	0	Fibers Type &	Total	Non-Asbestos	Fibrous
Client ID	Lab ID	Sampling Location	Description	Percentage	Asbestos	B	Percentage	Asbestos	Fibers Type &	Matrix
		' "					"		Percentage	Material
									6	%
36-B	77396	Bay 1 Ceiling	White Plaster Skim Coat	None Detected	0%		Not Required	N/A	None Detected	100%
36-C	77397	Bay 1 Ceiling	White Plaster Skim Coat	None Detected	0%		Not Required	N/A	None Detected	100%
37-A	77398	Bay 1 Ceiling	Gray Fibrous Plaster Rough Coat	Chrysotile 1,9%	1.9%		Not Required	N/A	Cellulose 10%	88.1%
37-B	77399	Bay 1 Ceiling	Gray Plaster Rough Coat	STOP	POSITIVE		SAMPLE	NOT	ANALYZED	N/A
37-C	77400	Bay 1 Ceiling	Gray Plaster Rough Coat	STOP	POSITIVE		SAMPLE	NOT	ANALYZED	N/A
38-A	77401	Bay 1 Ceiling	Blue Paint	Inconclusive No Asbestos Detected	0%	v	None Detected	<1.0%	None Detected	100%
38-B	77402	Bay 1 Ceiling	Blue Paint	Inconclusive No Asbestos Detected	0%	V	None Detected	<1.0%	None Detected	100%
39-A		Bay 2 Southeast Corner Surplus Pile in Bay 2	Red Clay Shingle With Blue Glaze	None Detected	0%		Not Required	N/A	None Detected	100%
39-В	77404	Bay 2 Southeast Corner Surplus Pile in Bay 2	Red Clay Shingle With Blue Glaze	None Detected	0%		Not Required	N/A	None Detected	100%
40-A		Bay 2 East Window Interior	White Window Glaze	Inconclusive No Asbestos Detected	0%	#	None Detected	<1.0%	None Detected	100%

KEY TO NOB COLUMN SYMBOLS

No Symbol in the NOB column denotes sample analyzed by ELAP Method 198.1 (PLM).

V NOB (non-friable organically bound)denotes material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

y denotes material analyzed by ELAP Method 198.6 (PLM) per NYSDOH. This Method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite.

denotes friable material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

X denotes sample prepped only by ELAP Method 198.6.

* Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos

PLM Bulk Asbestos Analysis by New York State Department of Health, ELAP Method 198.1 (198.4 and 198.6 ("Polarized Light Microscopy and Transmission Electron Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples." or EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200530-0).

Lab Code 200530-0 for PLM Analysis

Microscope: Olympus BH-2 #221797

PLM Analyst: K. Acosta Date of Analysis: 11/15/2024 Microscope: JEOL-100CX-II #EM-156094-87

TEM Analyst: A. Voldbakken Date of Analysis: 11/18/2024

Laboratory Results Approved By Asbestos Technical Director or Designee

Fernanda Weinman

ELAP ID No.: 10958

PLM & TEM BULK ASBESTOS ANALYSIS REPORT via NYSDOH ELAP Method 198.1,198.4 and 198.6

Client: Location:

Lu Engineers

Pre-Demolition RBM Survey

Job No: 8843-24 **Page:** 10 of 20

52-54 Canal Street, Lyons, New York

Sample Date:

11/7/2024

Reissued: 11/19/2024

Sample L	ate.	11/7/2024					Н	eissueu:	11/19/2024	
Client ID	Lab ID		Description	PLM Asbestos Fibers Type & Percentage	PLM Total Asbestos	N O B	TEM Asbestos Fibers Type & Percentage	TEM Total Asbestos	PLM Non-Asbestos Fibers Type & Percentage	Non- Fibrous Matrix Material %
40-B	77406	Bay 2 East Window Interior	White Window Glaze	Inconclusive No Asbestos Detected	0%	#	None Detected	<1.0%	None Detected	100%
41-A	77407	Back Room North Wall	Brown Fibrous Peg Board	None Detected	0%		Not Required	N/A	Cellulose 100%	0%
41-B	77408	Back Room North Wall	Brown Fibrous Peg Board	None Detected	0%		Not Required	N/A	Cellulose 100%	0%
42-A	77409	Bay 2 South Wall	Brown Fibrous Door Insulation	None Detected	0%		Not Required	N/A	Cellulose 100%	0%
42-B	77410	Bay 2 South Wall	Brown Fibrous Door Insulation	None Detected	0%		Not Required	N/A	Cellulose 100%	0%

KEY TO NOB COLUMN SYMBOLS

No Symbol in the NOB column denotes sample analyzed by ELAP Method 198.1 (PLM).

V NOB (non-friable organically bound)denotes material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

V denotes material analyzed by ELAP Method 198.6 (PLM) per NYSDOH. This Method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite.

denotes friable material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

X denotes sample prepped only by ELAP Method 198.6.

** Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos

PLM Bulk Asbestos Analysis by New York State Department of Health, ELAP Method 198.1, 198.4 and 198.6 ("Polarized Light Microscopy and Transmission Electron Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples.") or EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200530-0).

TESTING TO

Lab Code 200530-0 for PLM Analysis

Microscope: Olympus BH-2 #211874

PLM Analyst: T. Bush
Date of Analysis: 11/18/2024

Microscope: [EOL-100CX-II #EM-156094-87

TEM Analyst: A. Voldbakken

Date of Analysis: 11/18/2024

Laboratory Results Approved By:
Asbestos Technical Director or Designee

Fernanda Weinman

ELAP ID No.: 10958

Project Name: I (Pre-Demolition RBM Survey (Vacant Structure)	Lu Project # 50514-07	11C-11188
Site Address: 5	52-54 Canal Street, Lyons, New York	Laboratory Name: Paradigm Env	Paradigm Environmental Services
Results to:	Sample Type	Laboratory Address: 179 Lake Avenue	enue ALUM
Lu Engineers 280 East Broad Street, Suite 170 Rochester, NY 14604	Street, Suite 170 NYS ELAP PLM/TEM PLM Only TEM Only	Turn Around Time Comments:	[]
Email: msmith@luengineer	Email: msmith@luengineers.com, rdillard@luengineers.com, egonzalez@luengineers.com	☐ 72 HR	
FIELD ID	SAMPLE LOCATION	MATERIAL	NOTES
1-A	North Exterior Wall	Grey CMU Block	11/11/1
1-B	North Exterior Wall	Grey CMU Block	412
2-A	North Exterior Wall	Grey Mortar	4/3 w/HA#1
2-B	North Exterior Wall	Grey Mortar	
3-A	North Exterior Wall	White Paint	415
3-B	West Exterior, on Windowsill	White Paint	21/2
4-A	North Exterior, on Concrete Windowsill	Grey/Black Paint	211/2
4-B	North Exterior, on Concrete Windowsill	Grey/Black Paint	718
5-A	North Exterior, Between Metal Window Frame and CMU Block	White Caulk	47
5-B	North Exterior, Between Metal Window Frame and CMU Block	White Caulk	Helsilii Cas OCH

280 East Broad Street, Suite 170, Rochester, NY 14604 | Ph 585.385.7417 | Fax 585.546.1634 | Iuengineers.com Received By R. Dillard / E. Gonzalez

Relinquished By_

11-7-2024

Date Sampled:

Date/Time | 11/24 1408

Date/Time 11-11-2024

roject Name: Pr	Pre-Demolition RBM Survey		Lu Project # 50514-07	4844-24
ite Address: 35	352-54 Canal Street, Lyons, New York	Lyons, New York	Laboratory Name: Paradigm En	Paradigm Environmental Services
Results to:		Sample Type	Laboratory Address: 179 Lake Avenue Rochester, New York	venue 2 02 4 pt
Lu Engineers 280 East Broad Street, Suite 170 Rochester, NY 14604	reet, Suite 170 604	⊠ NYS ELAP PLM/TEM □ PLM Only □ TEM Only	Turn Around Time Comments:	POSITIV
Email: msmith@luengineer egonzalez@luengineers.com	Email: msmith@luengineers.com, rdillard@luengineers.com, egonzalez@luengineers.com		☐ 72 HR	
FIELD ID	/S	SAMPLE LOCATION	MATERIAL	NOTES
6-A	Nor	Northwest Exterior Door	Grey/White/Black/Orange Paint	17421
6-B	Nor	Northwest Exterior Door	Grey/White/Black/Orange Paint	432
7-A	North	Northwest Window Exterior	White Window Glaze	423
7-B	North	Northwest Window Exterior	White Window Glaze	H3H
8-A	Nor	Northwest Exterior Wall	Red Brick	425
8-B	Sou	Southwest Exterior Wall	Red Brick	13C
9-A	Nor	Northwest Exterior Wall	Grey Mortar	427 w/HA#8
9-B	Sou	Southwest Exterior Wall	Grey Mortar	428 w/HA# 8
10-A	Main Er	Main Entrance, on Metal Railing	Black Paint ,	429
10-B	Main E1	Main Entrance, on Metal Railing	Black Paint	430

Inspector: R. Dillard / 6. contelet 11-7-2024 Date Sampled:

Received By Relinquished By

Date/Time 11-11-2024

Date/Time [1.11.24 1408

Project Name: Pr	Pre-Demolition RBM Survey	M Survey	Lu Project # 50514-07		46-4488
Site Address: 35	52-54 Canal Street	352-54 Canal Street, Lyons, New York	Laboratory Name: Parad	Paradigm Environmental Services	Services
Results to:		Sample Type	Laboratory Address: 179 Rocl	179 Lake Avenue Rochester, New York	2 Stul
Lu Engineers 280 East Broad Street, Suite 170 Rochester, NY 14604	reet, Suite 170 604	S NYS ELAP PLM/TEM □ PLM Only □ TEM Only	Turn Around Time Immediate 12 HR	Comments:	STOP POSITIVE
Email: msmith@luengineer	Email: msmith@luengineers.com, rdillard@luengineers.com, egonzalez@luengineers.com		☐ 72 HR		
FIELD ID	S	SAMPLE LOCATION	MATERIAL		NOTES
11-A	Mair	Main Entrance, on Awning	Grey Paint	12h21	
11-B	Maiı	Main Entrance, on Awning	Grey Paint	432	
12-A	North Exterior	North Exterior Door, Between Metal Frame and CMU	White Caulk	433	
12-B	West E	West Exterior, on Bay Window	White Caulk	TECH	
13-A	Soı	Southeast Exterior Door	Grey Paint	435	- <u>P</u>
13-B	Son	Southeast Exterior Door	Grey Paint	98h	
14-A	On Roo	On Roof, at Concrete Ledge Joint	Grey Caulk	437	
14-B	On Roo	On Roof, at Concrete Ledge Joint	Grey Caulk	88h	
15-A	Un	Under Metal Roof Deck	Black Roofing Material	rial 439	
15-B	Un	Under Metal Roof Deck	Black Roofing Material	rial 440	

Date Sampled: 11-7-2024
Inspector: R. Dill and / 6. Goozelez

Relinquished By ...

Received By While

Date/Time 11-11-2024
Date/Time 11-11-2024

roject Name: Pr	Pre-Demolition RBM Survey	1 Survey	Lu Project # 50514-07	4844-24
ite Address: 35	352-54 Canal Street, Lyons, New York	Lyons, New York	Laboratory Name: Paradigm Environmental Services	nmental Services
Results to:		Sample Type	Laboratory Address: 179 Lake Avenue Rochester, New York	
Lu Engineers 280 East Broad Street, Suite 170 Rochester, NY 14604	reet, Suite 170 504	► NYS ELAP PLM/TEM □ PLM Only □ TEM Only	Turn Around Time Comments:	STOP POSITIVE
Email: msmith@luengineer	Email: msmith@luengineers.com, rdillard@luengineers.com, egonzalez@luengineers.com	aluengineers.com,		
FIELD ID	SA	SAMPLE LOCATION	MATERIAL	NOTES
16-A	Und	Under Metal Roof Deck	Black Roofing Paper	InhLL
16-B	Und	Under Metal Roof Deck	Black Roofing Paper	7hh
17-A	On c	On concrete Roof Ledge	Black Tar	443 on Patch Repair
17-B	On c	On concrete Roof Ledge	Black Tar	प्पृप् on Patch Repair

	_
2024	16. Gonzal
11-7	R. Dilland
Date Sampled	Inspector:

Relinquished By ' - 4 Date/Time 11-11-2024

Received By Mfew WW Date/Time 11-11-3024

Date Sampled: 11-7-2024
Inspector: R. Dillard / E. Gonzalez

Relinquished By

Received By After MO

Date/Time 11-11-2024
Date/Time 11/11/24 1351

Project Name: Pr	Pre- Demolition RBM Survey	M Survey	Lu Project # 50514-07		4243-24
Site Address: 52	2-54 Canal Street,	52-54 Canal Street, Lyons, New York 14489	Laboratory Name: Parac	digm Enviro	Paradigm Environmental Services
Results to:	7	Sample Type	Laboratory Address: 179	179 Lake Avenue	
		X NIVS EL AB BI NATENA	Roc	Rochester, New York	
Lu Engineers 280 East Broad Street, Suite 170 Rochester, NY 14604	reet, Suite 170 504	☐ NEW Only ☐ TEM Only ☐ TEM Only	Turn Around Time Immediate 12 HR	Comments:	AXILISON DOLLAR
Email: msmith@luengineer	Email: msmith@luengineers.com, rdillard@luengineers.com, egonzalez@luengineers.com	l@luengineers.com,	☐ 72 HR (100 ☐ 48 HK	2	
FIELD ID	∞	SAMPLE LOCATION	MATERIAL		NOTES
23-A	Front Room, Eas	Front Room, East Wall, on Heating Duct and Brick	White Insulation Material	terial	77366
23-B	Front Room, Eas	Front Room, East Wall, on Heating Duct and Brick	White Insulation Material		367
24-A	Or	On Top of Wood Deck	Black Roofing Material		Taken from Interior Front Room
24-B	Or	On Top of Wood Deck	Black Roofing Material		Taken from Interior Front Room
25-A	Or	On Top of Wood Deck	Black Waterproof Membrane		n To
25-B	Or	On Top of Wood Deck	Black Waterproof Membrane	3	37) On Top of HA# 24
26-A	Front Roo	Front Room, South Wall, in Fuse Box	Tan Cloth Wire Cover		312
26-B	Front Roo	Front Room, South Wall, in Fuse Box	Tan Cloth Wire Cover		373
27-A	Front Roo	Front Room, South Wall, in Fuse Box	Black Wire Insulation	1	374 Under HA#26
27-B	Front Roo	Front Room, South Wall, in Fuse Box	Black Wire Insulation		375 Under HA#26

Date Sampled:

Inspector: R. Dillard / 6. Contalet

11-7-2024

Relinquished By

Received By

MD Date/Time 11-11-2024

MD Date/Time 11.11.24 [35]

	Pre-Demolition RBM Survey	M Survey	Lu Project # 50514-07	8843-24
Site Address: 52-	-54 Canal Street,	52-54 Canal Street, Lyons, New York	Laboratory Name: Paradigm En	Paradigm Environmental Services
Results to:		Sample Type	Laboratory Address: 179 Lake Avenue Rochester: New York	New York B. 2 AC M.
Lu Engineers 280 East Broad Street, Suite 170 Rochester, NY 14604	eet, Suite 170 04	⊠ NYS ELAP PLM/TEM □ PLM Only □ TEM Only	e ☐ 12 HR	POST
Email: msmith@luengineers.com, rdillard@luengineers.com, egonzalez@luengineers.com	gineers.com, rdillar	d@luengineers.com,	$\Box 72 \text{ HR} \qquad \boxed{\mathbf{X}} 5 \text{ Day}$	
FIELD ID	9 2	SAMPLE LOCATION	MATERIAL	NOTES
28-A		Attic, on Air Duct	Grey/Tan Duct Tape	77376
28-B	_	Attic, on Air Duct	Grey/Tan Duct Tape	377
29-A	7	Attic, on Heat Duct	White Duct Insulation	378
29-B	7	Attic, on Heat Duct	White Duct Insulation	379
29-C	7	Attic, on Heat Duct	White Duct Insulation	380
30-A	Atti	Attic, South Wall, on Pipe	Tan Cloth Pipe Cover	381
30-B	Atti	Attic, South Wall, on Pipe	Tan Cloth Pipe Cover	382
30-C	Atti	Attic, South Wall, on Pipe	Tan Cloth Pipe Cover	383
31-A	Atti	Attic, South Wall, on Pipe	Air Cell Pipe Insulation	1 86
31-B	Atti	Attic, South Wall, on Pipe	Air Cell Pipe Insulation	365

Date Sampled:

Inspector: R. Dillard / 6. Gonzalez

Received By K Relinquished By

Date/Time 11-11-2024

Date/Time [].[1.24]35]

Bulk Sample Chain of Custody

Project Name: Pi	Pre- Demolition RBM Survey	M Survey	Lu Project # 50514-07	484	りて・とかめ
Site Address: 52	52-54 Canal Street, Lyons, New York	Lyons, New York	Laboratory Name: Paradi	Paradigm Environmental Services	rvices
Results to:		Sample Type	Laboratory Address: 179 I Roch	179 Lake Avenue Rochester, New York	かっかっため
Lu Engineers 280 East Broad Street, Suite 170 Rochester, NY 14604	reet, Suite 170 504	⊠ NYS ELAP PLM/TEM □ PLM Only □ TEM Only	Turn Around Time Immediate 12 HR		2888
Email: msmith@luengineer	Email: <u>msmith@luengineers.com, sdavis@luengineers.com, egonzalez@luengineers.com</u>	luengineers.com,	☐ 72 HR		
FIELD ID	7S	SAMPLE LOCATION	MATERIAL		NOTES
31-C	Attic	Attic, South Wall, on Pipe	Air Cell Pipe Insulation	mo 172gc	
32-A	Interior Winc	Interior Window, Front Room, North Wall	Brown Paint	387	
32-B	Interior Winc	Interior Window, Front Room, North Wall	Brown Paint	388	
33-A	Interior Winc	Interior Window, Front Room, North Wall	White Window Glaze		
33-B	Interior Winc	Interior Window, Front Room, North Wall	White Window Glaze	e 390	
34-A	Н	Bay 1, South Wall	White Paint	341	
34-B	Ŧ	Bay 1, South Wall	White Paint	343	
35-A		Bay 1, Ceiling	White Paint	393	
35-B		Bay 1, Ceiling	White Paint	344	
36-A		Bay 1, Ceiling	White Plaster Skim Coat		395 AB 188
					0.111

Date Sampled: 11-7-2024

Inspector:

2. Dillard / G. Conzalez

Relinquished By And MA

Date/Time 11-11-2024

Bulk Sample Chain of Custody

Project Name: Pr	Pre- Demolition RBM Survey	M Survey	Lu Project # 50514-07	4842-21
Site Address: 52	52-54 Street, Lyons, New York	New York	Laboratory Name: Paradigm	Paradigm Environmental Services
Results to:		Sample Type	Laboratory Address: 179 Lak	
Lu Engineers 280 East Broad Street, Suite 170 Rochester, NY 14604	reet, Suite 170 104	☒ NYS ELAP PLM/TEM☐ PLM Only☐ TEM Only	me	Comments:
Email: msmith@luengineer	Email: msmith@luengineers.com, rdillard@luengineers.com, egonzalez@luengineers.com	laluengineers.com,	☐ 24 HR	SIOP POSITIVE
FIELD ID	S	SAMPLE LOCATION	MATERIAL	NOTES
36-B		Bay 1, Ceiling	White Plaster Skim Coat	77.3%
36-C		Bay 1, Ceiling	White Plaster Skim Coat	397
37-A		Bay 1, Ceiling	Grey Plaster Rough Coat	348
37-B		Bay 1, Ceiling	Grey Plaster Rough Coat	399
37-C		Bay 1, Ceiling	Grey Plaster Rough Coat	00/7
38-A		Bay 1, Ceiling	Blue Paint	/oh
38-B		Bay 1, Ceiling	Blue Paint	Coh
39-A	Bay	Bay 2, Southeast Corner	Red Clay Shingle with Blue Glaze	aze 403 Surplus Pile in Bay 2
39-B	Bay	Bay 2, Southeast Corner	Red Clay Shingle with Blue Glaze	aze 404 Surplus Pile in Bay 2
40-A	Bay 2	Bay 2, East Window Interior	White Window Glaze	405

R. Dilland / E. Gonzalez Date Sampled: 11-7-2024 Inspector:

Relinquished By

Date/Time 11/11/24 1351 Date/Time 11-11-2024 Received By

280 East Broad Street, Suite 170, Rochester, NY 14604 | Ph 585.385.7417 | Fax 585.546.1634 | Iuengineers.com

Bulk Sample Chain of Custody

Project Name:	Pre- Demolition RBM Survey	iM Survey	Lu Project # 50514-07	ひに-とりと
Site Address: 5	52-54 Canal Street, Lyons, New York	Lyons, New York	Laboratory Name: Paradigm Environmental Services	nmental Services
Results to:		Sample Type	Laboratory Address: 179 Lake Avenue Rochester, New York	ork
Lu Engineers 280 East Broad Street, Suite 170 Rochester, NY 14604	Street, Suite 170 4604	□ NYS ELAP PLM/TEM □ PLM Only □ TEM Only	Comments:	JESS JE
Email: msmith@luengineer	Email: msmith@luengineers.com, rdillard@luengineers.com, egonzalez@luengineers.com	d@luengineers.com,	\Box 24 HR \bigcirc 10 \Box 48 HR \Box 72 HR \bigcirc \bigcirc 5 Day	
FIELD ID	S	SAMPLE LOCATION	MATERIAL	NOTES
40-B	Bay 2	Bay 2, East Window Interior	White Window Glaze	274MG
41-A	Bac	Back Room, North Wall	Brown Peg Board	407
41-B	Вас	Back Room, North Wall	Brown Peg Board	90/1
42-A		Bay 2, South Wall	Brown Door Insulation	bh
42-B	=	Bay 2, South Wall	Brown Door Insulation	410

Date Sampled: 11-7-2024
Inspector: R. Dilland / 6. Gan Edez

Relinquished By My

Received By Myll MM

Date/Time 11-11-2024

Date/Time | 1.11.24 135|

280 East Broad Street, Suite 170, Rochester, NY 14604 | Ph 585.385.7417 | Fax 585.546.1634 | Iuengineers.com

Analytical Report For

Lu Engineers, Inc.

For Lab Project ID

245307

Referencing

50514-07 Pre-Demo RBM Survey 52-54 Canal Street

*Prepared**

Friday, November 15, 2024

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below:

Reduced sample size used for Lead analysis due to limited sample volume. Kindly refer to Chain of Custody Supplement for the affected samples.

Emily Farmen

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 50514-07 Pre-Demo RBM Survey 52-54 Canal Street

Sample Identifier: Exterior LP-3, White Paint

Lab Sample ID: 245307-01 **Date Sampled:** 11/7/2024 9:00

Matrix: Paint Date Received 11/11/2024

Lead

Analyte Result Units Qualifier Date Analyzed

Lead **0.0354** % 11/13/2024 09:53

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 11/12/2024 Data File: 241113A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 50514-07 Pre-Demo RBM Survey 52-54 Canal Street

Sample Identifier: Exterior LP-4, Grey/Blk Paint

Lab Sample ID: 245307-02 **Date Sampled:** 11/7/2024 9:10

Matrix: Paint Date Received 11/11/2024

Lead

Analyte Result Units Qualifier Date Analyzed

Lead **0.0222** % 11/13/2024 09:56

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 11/12/2024 Data File: 241113A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 50514-07 Pre-Demo RBM Survey 52-54 Canal Street

Sample Identifier: Exterior LP-6, Gry/Wht/Blk/Or/Pnt

Lab Sample ID: 245307-03 **Date Sampled:** 11/7/2024 9:20

Matrix: Paint Date Received 11/11/2024

Lead

Analyte Result Units Qualifier Date Analyzed

Lead **2.19** % 11/13/2024 09:59

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 11/12/2024 Data File: 241113A

Client: Lu Engineers, Inc.

50514-07 Pre-Demo RBM Survey 52-54 Canal Street **Project Reference:**

Sample Identifier: Exterior LP-10, Black Paint

Date Sampled: 11/7/2024 9:30 Lab Sample ID: 245307-04

Matrix: Paint Date Received 11/11/2024

Lead

Analyte Qualifier Result Units **Date Analyzed** Lead

1.80 % 11/13/2024 10:02

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 11/12/2024 Data File: 241113A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 50514-07 Pre-Demo RBM Survey 52-54 Canal Street

Sample Identifier: Exterior LP-11, Grey Paint

Lab Sample ID: 245307-05 **Date Sampled:** 11/7/2024 10:00

Matrix: Paint Date Received 11/11/2024

Lead

Analyte Result Units Qualifier Date Analyzed

Lead 4.55 % 11/14/2024 06:24

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 11/12/2024 Data File: 241114A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 50514-07 Pre-Demo RBM Survey 52-54 Canal Street

Sample Identifier: Exterior LP-13, Grey Paint

Lab Sample ID: 245307-06 **Date Sampled:** 11/7/2024 10:10

Matrix: Paint Date Received 11/11/2024

Lead

Analyte Result Units Qualifier Date Analyzed

Lead **0.123** % 11/13/2024 10:09

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 11/12/2024 Data File: 241113A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 50514-07 Pre-Demo RBM Survey 52-54 Canal Street

Sample Identifier: Interior LP-18, Blk/Blue Paint

Lab Sample ID: 245307-07 **Date Sampled:** 11/7/2024 10:20

Matrix: Paint Date Received 11/11/2024

Lead

Analyte Result Units Qualifier Date Analyzed

Lead **0.186** % 11/13/2024 10:19

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 11/12/2024 Data File: 241113A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 50514-07 Pre-Demo RBM Survey 52-54 Canal Street

Sample Identifier: Interior LP-19, Grey Paint

Lab Sample ID: 245307-08 **Date Sampled:** 11/7/2024 10:30

Matrix: Paint Date Received 11/11/2024

Lead

Analyte Result Units Qualifier Date Analyzed

Lead **0.318** % 11/13/2024 10:22

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 11/12/2024 Data File: 241113A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 50514-07 Pre-Demo RBM Survey 52-54 Canal Street

Sample Identifier: Interior LP-20, Multi-Col. Paint

Lab Sample ID: 245307-09 **Date Sampled:** 11/7/2024 11:00

Matrix: Paint Date Received 11/11/2024

Lead

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Lead
 1.06
 %
 11/13/2024
 10:25

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 11/12/2024 Data File: 241113A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 50514-07 Pre-Demo RBM Survey 52-54 Canal Street

Sample Identifier: Interior LP-32, Brown Paint

Lab Sample ID: 245307-10 **Date Sampled:** 11/7/2024 11:10

Matrix: Paint Date Received 11/11/2024

Lead

Analyte Result Units Qualifier Date Analyzed

Lead 3.89 % 11/14/2024 06:27

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 11/12/2024 Data File: 241114A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 50514-07 Pre-Demo RBM Survey 52-54 Canal Street

Sample Identifier: Interior LP-34, White Paint

Lab Sample ID: 245307-11 **Date Sampled:** 11/7/2024 11:20

Matrix: Paint Date Received 11/11/2024

Lead

Analyte Result Units Qualifier Date Analyzed

Lead 1.33 % 11/13/2024 10:32

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 11/12/2024 Data File: 241113A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 50514-07 Pre-Demo RBM Survey 52-54 Canal Street

Sample Identifier: Interior LP-35, White Paint

Lab Sample ID: 245307-12 **Date Sampled:** 11/7/2024 11:30

Matrix: Paint Date Received 11/11/2024

Lead

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Lead
 2.21
 %
 11/13/2024 10:35

Method Reference(s): EPA 6010C

EPA 3050B

 Preparation Date:
 11/12/2024

 Data File:
 241113A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 50514-07 Pre-Demo RBM Survey 52-54 Canal Street

Sample Identifier: Interior LP-38, Blue Paint

Lab Sample ID: 245307-13 **Date Sampled:** 11/7/2024 12:00

Matrix: Paint Date Received 11/11/2024

Lead

Analyte Result Units Qualifier Date Analyzed

Lead **4.85** % 11/14/2024 06:30

Method Reference(s): EPA 6010C

EPA 3050B

 Preparation Date:
 11/12/2024

 Data File:
 241114A

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "H" = Denotes a parameter analyzed outside of holding time.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

Temperature:	Holding Time:	Preservation:	Container Type:	Receipt Parameter NE	**LAB USE ONLY BELOW THIS	10 + 15	9 1100	8 1030	7 1020	6 1010	5 1000	4 0930	3 0920	2 0410	1 11-7-24 0900	DATE TIME O		54 Canal s	Project NAME/SITE NAME:				FARADIGM	
	۲ 	~ []	~	210/241/242/243/244 NELAC Compliance	S LINE**	× +	×	X	X Interior	×	×	×	×	× -	X Exterior	G R A SAMPLE LOCATION/FIELD ID B	The latest and the	COMMENTS:	ATTN: Mitch Smith	PHONE: 385-7417 FAX:	CITY: ROCHESTER S	ADDRESS: 280 East Broad Street, Suite	COMPANY: LU ENGINEERS	REPORT TO:
Received @ Lab By	Received By	Relinguished By	R. Dillard		STATE OF THE PARTY	LP-32 X JX	い-20 × K		Th- 18 X X	LP-13 X X	16-11 X X	LP-10 X X	X X 9-97	X 1 X h-47	$LP-3 \times 1 \times$	NFIELD ID X - R - A A A C C C C C C C C C C C C C C C C		msmith@luengineers.com, rdillard@luengineers.com, egonzalez@luengineers.com	ATTN:	546-1634 PHONE:	STATE: NY ZIP: 14604 CITY:	et, Suite 170	COMPANY:	.10:
il / il / j / i d	Data Time	Date/Time	E. Gonzalez 11-7-2024														REQUESTED ANALYSIS	com, egonzalez@luengineers.co		FAX:	STATE: ZIP:		Same	INVOICE TO:
12:37 Filt			Total Cost				Multi-col. Paint 6		alk al. But	Grey point	Grey Paht		my lunt Blk low / Ret	2	LP-3, white paint 0	PARADIGM LAB SAMPLE NUMBER		n Quotation #	5	STD OTHER	TURNAROUND TIME: (WORKING DAYS)	10-11505 LOCSHC	LAB PROJECT #: CLIENT PROJECT #:	

CHAIN OF CUSTODY

Passer P
--

Chain of Custody Supplement

Client:	Lu Engineers	Completed by:	Glenn Pezzulo
Lab Project ID:	245307	Date:	11/11/24
		lition Requirements AP 210/241/242/243/244	*
Condition	NELAC compliance with the sam Yes	nple condition requirements i No	upon receipt N/A
Container Type Comments	X		
Comments	-		
Transferred to method- compliant container			
Headspace (<1 mL) Comments			
Preservation			
Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
Temperature Comments			X
comments	8		
Compliant Sample Quantity/		05,-08+1202,-06,	
Comments	¥=====================================	limited volum	ne MB 11/12/24

EMSL

EMSL Analytical, Inc.

200 Route 130, Cinnaminson, NJ, 08077 Telephone: 856-858-4800 Fax:856-786-5974 EMSL-CIN-01

December 06, 2024

Mitch Smith LU Engineers [LUEN50] 280 East Broad St., Suite 170 Rochester, NY 14604

The following analytical report covers the analysis performed on samples submitted to EMSL Analytical, Inc. on 11/13/2024. The results are tabulated on the attached pages for the following client designated project:

EMSL Order ID: 012437007 LIMS Reference ID: AC37007

EMSL Customer ID: LUEN50

Pre-Demo RBM Survey (52-54 Canal Street) 50514-07

The reference number for these samples is EMSL Order #: <u>AC37007</u>. Please use this reference when calling about these samples. If you have any questions, please do not hesitate to contact the lab at 856-858-4800.

Ch MM S

Owen McKenna Laboratory Manager or other approved signatory

Table of Contents

Cover Letter	1
Sample Condition on Receipt	3
Samples in Report	4
Positive Hits Summary	5
Sample Results	6
Quality Assurance Results	12
Certified Analyses	13
Certifications	13
Qualifiers, Definitions and Disclaimer	14
Chain of Custody PDF	15

200 Route 130, Cinnaminson, NJ, 08077 Telephone: 856-858-4800 Fax:856-786-5974

EMSL-CIN-01

Attention: Mitch Smith

LU Engineers [LUEN50] 280 East Broad St., Suite 170 Rochester, NY 14604

msmith@luengineers.com

(585) 385-7417

Project Name:

Pre-Demo RBM Survey (52-54 Canal Street)

EMSL Customer ID: LUEN50

EMSL Order ID: 012437007 LIMS Reference ID: AC37007

50514-07

Customer PO:

 EMSL Sales Rep:
 Gillian Egiazarov

 Received:
 11/13/2024 09:20

 Reported:
 12/06/2024 14:05

Sample Condition on Receipt

Cooler ID: Default Cooler Temperature: 21.4 °C

Custody Seals Y

Containers Intact Y

COC/Labels Agree Y

Preservation Confirmed Y

200 Route 130, Cinnaminson, NJ, 08077 Telephone: 856-858-4800 Fax:856-786-5974

EMSL-CIN-01

Attention: Mitch Smith

LU Engineers [LUEN50] 280 East Broad St., Suite 170 Rochester, NY 14604

(585) 385-7417

msmith@luengineers.com

EMSL Order ID: 012437007 **LIMS Reference ID:** AC37007

EMSL Customer ID: LUEN50

Project Name: Pre-Demo RBM Survey (52-54 Canal Street)

50514-07

Customer PO:

 EMSL Sales Rep:
 Gillian Egiazarov

 Received:
 11/13/2024 09:20

 Reported:
 12/06/2024 14:05

Samples in this Report

Lab ID	Sample	Matrix	Date Sampled	Date Received
AC37007-01	PCB-5	Solid	11/7/24 12:00 am	11/13/2024
AC37007-02	PCB-7	Solid	11/7/24 12:00 am	11/13/2024
AC37007-03	PCB-12	Solid	11/7/24 12:00 am	11/13/2024
AC37007-04	PCB-14	Solid	11/7/24 12:00 am	11/13/2024
AC37007-05	PCB-33	Solid	11/7/24 12:00 am	11/13/2024
AC37007-06	PCB-40	Solid	11/7/24 12:00 am	11/13/2024

200 Route 130, Cinnaminson, NJ, 08077 Telephone: 856-858-4800 Fax:856-786-5974

EMSL-CIN-01

Attention: Mitch Smith

LU Engineers [LUEN50] 280 East Broad St., Suite 170 Rochester, NY 14604 (585) 385-7417

msmith@luengineers.com

Project Name:

Pre-Demo RBM Survey (52-54 Canal Street)

EMSL Order ID: 012437007 LIMS Reference ID: AC37007

EMSL Customer ID: LUEN50

50514-07

Customer PO:

 EMSL Sales Rep:
 Gillian Egiazarov

 Received:
 11/13/2024 09:20

 Reported:
 12/06/2024 14:05

Positive Hits Summary

No positive results reported

200 Route 130, Cinnaminson, NJ, 08077 Telephone: 856-858-4800 Fax:856-786-5974

EMSL-CIN-01

Attention: Mitch Smith

LU Engineers [LUEN50] 280 East Broad St., Suite 170 Rochester, NY 14604 (585) 385-7417

msmith@luengineers.com

EMSL Order ID: 012437007 LIMS Reference ID: AC37007 EMSL Customer ID: LUEN50

Project Name: Pre-Demo RBM Survey (52-54 Canal Street)

50514-07

Customer PO:

 EMSL Sales Rep:
 Gillian Egiazarov

 Received:
 11/13/2024 09:20

 Reported:
 12/06/2024 14:05

Sample Results

Sample: PCB-5/White Caulk AC37007-01 (Solid)

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analyst Initials	Prep Method	Analytical Method
GC-SVOA										
Aroclor-1016	ND		1	0.26	mg/kg	11/26/24 08:34	11/27/24 11:48	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1221	ND		1	0.26	mg/kg	11/26/24 08:34	11/27/24 11:48	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1232	ND		1	0.26	mg/kg	11/26/24 08:34	11/27/24 11:48	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1242	ND		1	0.26	mg/kg	11/26/24 08:34	11/27/24 11:48	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1248	ND		1	0.26	mg/kg	11/26/24 08:34	11/27/24 11:48	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1254	ND		1	0.26	mg/kg	11/26/24 08:34	11/27/24 11:48	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1260	ND		1	0.26	mg/kg	11/26/24 08:34	11/27/24 11:48	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1262	ND		1	0.26	mg/kg	11/26/24 08:34	11/27/24 11:48	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1268	ND		1	0.26	mg/kg	11/26/24 08:34	11/27/24 11:48	CWA/TL1	SW846 3546	SW846-8082A
Surrogate(s)	Recovery	Q		Limits						
Surrogate: Tetrachloro-m-xylene	56%			10-112		11/26/24 08:34	11/27/24 11:48	CWA/TL1	SW846 3546	SW846-8082A
Surrogate: Decachlorobiphenyl	53%			10-123		11/26/24 08:34	11/27/24 11:48	CWA/TL1	SW846 3546	SW846-8082A

200 Route 130, Cinnaminson, NJ, 08077 Telephone: 856-858-4800 Fax:856-786-5974

EMSL-CIN-01

Attention: Mitch Smith

LU Engineers [LUEN50] 280 East Broad St., Suite 170 Rochester, NY 14604 (585) 385-7417

msmith@luengineers.com

nineers [LUEN50]

Project Name: Pre-Demo RBM Survey (52-54 Canal Street)

50514-07

EMSL Order ID: 012437007 LIMS Reference ID: AC37007

EMSL Customer ID: LUEN50

Customer PO:

 EMSL Sales Rep:
 Gillian Egiazarov

 Received:
 11/13/2024 09:20

 Reported:
 12/06/2024 14:05

Sample Results (Continued)

Sample: PCB-7/White Window Glaze

AC37007-02 (Solid)

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analyst Initials	Prep Method	Analytical Method
GC-SVOA										
Aroclor-1016	ND		1	0.24	mg/kg	11/26/24 08:34	11/27/24 12:10	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1221	ND		1	0.24	mg/kg	11/26/24 08:34	11/27/24 12:10	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1232	ND		1	0.24	mg/kg	11/26/24 08:34	11/27/24 12:10	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1242	ND		1	0.24	mg/kg	11/26/24 08:34	11/27/24 12:10	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1248	ND		1	0.24	mg/kg	11/26/24 08:34	11/27/24 12:10	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1254	ND		1	0.24	mg/kg	11/26/24 08:34	11/27/24 12:10	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1260	ND		1	0.24	mg/kg	11/26/24 08:34	11/27/24 12:10	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1262	ND		1	0.24	mg/kg	11/26/24 08:34	11/27/24 12:10	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1268	ND		1	0.24	mg/kg	11/26/24 08:34	11/27/24 12:10	CWA/TL1	SW846 3546	SW846-8082A
Surrogate(s)	Recovery	Q		Limits						
Surrogate: Tetrachloro-m-xylene	64%			10-112		11/26/24 08:34	11/27/24 12:10	CWA/TL1	SW846 3546	SW846-8082A
Surrogate: Decachlorobiphenyl	58%			10-123		11/26/24 08:34	11/27/24 12:10	CWA/TL1	SW846 3546	SW846-8082A

200 Route 130, Cinnaminson, NJ, 08077 Telephone: 856-858-4800 Fax:856-786-5974

EMSL-CIN-01

Attention: Mitch Smith

LU Engineers [LUEN50] 280 East Broad St., Suite 170 Rochester, NY 14604 (585) 385-7417

msmith@luengineers.com

EMSL Order ID: 012437007 LIMS Reference ID: AC37007 EMSL Customer ID: LUEN50

Project Name: Pre-Demo RBM Survey (52-54 Canal Street)

50514-07

Customer PO:

 EMSL Sales Rep:
 Gillian Egiazarov

 Received:
 11/13/2024 09:20

 Reported:
 12/06/2024 14:05

Sample Results (Continued)

Sample: PCB-12/White Caulk AC37007-03 (Solid)

Analyte	Result	Q D	F RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analyst Initials	Prep Method	Analytical Method
GC-SVOA									
Aroclor-1016	ND		0.98	mg/kg	11/26/24 08:34	11/27/24 12:32	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1221	ND		0.98	mg/kg	11/26/24 08:34	11/27/24 12:32	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1232	ND		0.98	mg/kg	11/26/24 08:34	11/27/24 12:32	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1242	ND		0.98	mg/kg	11/26/24 08:34	11/27/24 12:32	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1248	ND		0.98	mg/kg	11/26/24 08:34	11/27/24 12:32	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1254	ND		0.98	mg/kg	11/26/24 08:34	11/27/24 12:32	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1260	ND		0.98	mg/kg	11/26/24 08:34	11/27/24 12:32	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1262	ND		0.98	mg/kg	11/26/24 08:34	11/27/24 12:32	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1268	ND		0.98	mg/kg	11/26/24 08:34	11/27/24 12:32	CWA/TL1	SW846 3546	SW846-8082A
Surrogate(s)	Recovery	Q	1	Limits					
Surrogate: Tetrachloro-m-xylene	61%			10-112	11/26/24 08:34	11/27/24 12:32	CWA/TL1	SW846 3546	SW846-8082A
Surrogate: Decachlorobiphenyl	53%			10-123	11/26/24 08:34	11/27/24 12:32	CWA/TL1	SW846 3546	SW846-8082A

200 Route 130, Cinnaminson, NJ, 08077 Telephone: 856-858-4800 Fax:856-786-5974

EMSL-CIN-01

Attention: Mitch Smith

LU Engineers [LUEN50] 280 East Broad St., Suite 170 Rochester, NY 14604 (585) 385-7417

msmith@luengineers.com

EMSL Order ID: 012437007 LIMS Reference ID: AC37007 EMSL Customer ID: LUEN50

Project Name: Pre-Demo RBM Survey (52-54 Canal Street)

50514-07

Customer PO:

 EMSL Sales Rep:
 Gillian Egiazarov

 Received:
 11/13/2024 09:20

 Reported:
 12/06/2024 14:05

Sample Results (Continued)

Sample: PCB-14/Grey Caulk AC37007-04 (Solid)

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analyst Initials	Prep Method	Analytical Method
GC-SVOA										
Aroclor-1016	ND		1	0.88	mg/kg	11/26/24 08:34	11/27/24 12:54	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1221	ND		1	0.88	mg/kg	11/26/24 08:34	11/27/24 12:54	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1232	ND		1	0.88	mg/kg	11/26/24 08:34	11/27/24 12:54	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1242	ND		1	0.88	mg/kg	11/26/24 08:34	11/27/24 12:54	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1248	ND		1	0.88	mg/kg	11/26/24 08:34	11/27/24 12:54	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1254	ND		1	0.88	mg/kg	11/26/24 08:34	11/27/24 12:54	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1260	ND		1	0.88	mg/kg	11/26/24 08:34	11/27/24 12:54	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1262	ND		1	0.88	mg/kg	11/26/24 08:34	11/27/24 12:54	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1268	ND		1	0.88	mg/kg	11/26/24 08:34	11/27/24 12:54	CWA/TL1	SW846 3546	SW846-8082A
Surrogate(s)	Recovery	Q		Limits						
Surrogate: Tetrachloro-m-xylene	62%			10-112		11/26/24 08:34	11/27/24 12:54	CWA/TL1	SW846 3546	SW846-8082A
Surrogate: Decachlorobiphenyl	58%			10-123		11/26/24 08:34	11/27/24 12:54	CWA/TL1	SW846 3546	SW846-8082A

200 Route 130, Cinnaminson, NJ, 08077 Telephone: 856-858-4800 Fax:856-786-5974

EMSL-CIN-01

Attention: Mitch Smith

LU Engineers [LUEN50] 280 East Broad St., Suite 170 Rochester, NY 14604 (585) 385-7417

msmith@luengineers.com

EMSL Order ID: 012437007 LIMS Reference ID: AC37007 EMSL Customer ID: LUEN50

Project Name: Pre-Demo RBM Survey (52-54 Canal Street)

50514-07

Customer PO:

 EMSL Sales Rep:
 Gillian Egiazarov

 Received:
 11/13/2024 09:20

 Reported:
 12/06/2024 14:05

Sample Results (Continued)

Sample: PCB-33/White Window Glaze

AC37007-05 (Solid)

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analyst Initials	Prep Method	Analytical Method
GC-SVOA										
Aroclor-1016	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:16	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1221	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:16	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1232	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:16	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1242	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:16	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1248	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:16	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1254	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:16	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1260	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:16	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1262	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:16	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1268	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:16	CWA/TL1	SW846 3546	SW846-8082A
Surrogate(s)	Recovery	Q		Limits						
Surrogate: Tetrachloro-m-xylene	54%			10-112		11/26/24 08:34	11/27/24 13:16	CWA/TL1	SW846 3546	SW846-8082A
Surrogate: Decachlorobiphenyl	48%			10-123		11/26/24 08:34	11/27/24 13:16	CWA/TL1	SW846 3546	SW846-8082A

200 Route 130, Cinnaminson, NJ, 08077 Telephone: 856-858-4800 Fax:856-786-5974

EMSL-CIN-01

Attention: Mitch Smith

LU Engineers [LUEN50] 280 East Broad St., Suite 170 Rochester, NY 14604 (585) 385-7417

msmith@luengineers.com

EMSL Order ID: 012437007 LIMS Reference ID: AC37007 EMSL Customer ID: LUEN50

Project Name: Pre-Demo RBM Survey (52-54 Canal Street)

50514-07

Customer PO:

 EMSL Sales Rep:
 Gillian Egiazarov

 Received:
 11/13/2024 09:20

 Reported:
 12/06/2024 14:05

Sample Results (Continued)

Sample: PCB-40/White Window Glaze

AC37007-06 (Solid)

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analyst Initials	Prep Method	Analytical Method
GC-SVOA										
Aroclor-1016	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:38	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1221	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:38	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1232	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:38	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1242	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:38	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1248	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:38	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1254	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:38	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1260	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:38	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1262	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:38	CWA/TL1	SW846 3546	SW846-8082A
Aroclor-1268	ND		1	0.25	mg/kg	11/26/24 08:34	11/27/24 13:38	CWA/TL1	SW846 3546	SW846-8082A
Surrogate(s)	Recovery	Q		Limits						
Surrogate: Tetrachloro-m-xylene	61%			10-112		11/26/24 08:34	11/27/24 13:38	CWA/TL1	SW846 3546	SW846-8082A
Surrogate: Decachlorobiphenyl	56%			10-123		11/26/24 08:34	11/27/24 13:38	CWA/TL1	SW846 3546	SW846-8082A

200 Route 130, Cinnaminson, NJ, 08077 Telephone: 856-858-4800 Fax:856-786-5974

EMSL-CIN-01

Attention: Mitch Smith Project Name:

LU Engineers [LUEN50] 280 East Broad St., Suite 170 Rochester, NY 14604 (585) 385-7417

msmith@luengineers.com

Pre-Demo RBM Survey (52-54 Canal Street)

EMSL Customer ID: LUEN50

EMSL Order ID: 012437007 LIMS Reference ID: AC37007

50514-07

Customer PO:

 EMSL Sales Rep:
 Gillian Egiazarov

 Received:
 11/13/2024 09:20

 Reported:
 12/06/2024 14:05

Quality Control

GC-SVOA

Analyte	ResultQual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BCK2551 - SW846 3546									
Blank (BCK2551-BLK1)			Pre	pared: 11/26	/2024 Analyz	red: 11/27/2	024		
Aroclor-1016	ND	0.25	mg/kg	, ,,		, .,-			
Aroclor-1221	ND	0.25	mg/kg						
Aroclor-1232	ND	0.25	mg/kg						
Aroclor-1242	ND	0.25	mg/kg						
Aroclor-1248	ND	0.25	mg/kg						
Aroclor-1254	ND	0.25	mg/kg						
Aroclor-1260	ND	0.25	mg/kg						
Aroclor-1262	ND	0.25	mg/kg						
Aroclor-1268	ND	0.25	mg/kg						
Surrogate(s)									
Surrogate: Tetrachloro-m-xylene				0.5000		60	10-112		
Surrogate: Decachlorobiphenyl				0.5000		56	10-123		
LCS (BCK2551-BS1)			Pre	pared: 11/26	/2024 Analyz	red: 11/27/2	024		
Aroclor-1016	3.07	0.25	mg/kg	5.000		61	23-111		
Aroclor-1260	3.00	0.25	mg/kg	5.000		60	29-119		
Surrogate(s)									
Surrogate: Tetrachloro-m-xylene				0.5000		62	10-112		
Surrogate: Decachlorobiphenyl				0.5000		57	10-123		
Matrix Spike (BCK2551-MS1)	Source: A	AC37007-06	Pre	pared: 11/26	/2024 Analyz	red: 11/27/2	024		
Aroclor-1016	3.38	0.25	mg/kg	5.076	ND	67	10-111		
Aroclor-1260	3.25	0.25	mg/kg	5.076	ND	64	10-132		
Surrogate(s)									
Surrogate: Tetrachloro-m-xylene				0.5076		63	10-112		
Surrogate: Decachlorobiphenyl				0.5076		55	10-123		
Matrix Spike Dup (BCK2551-MSD1)	Source:	AC37007-06	Pre	pared: 11/26	/2024 Analyz	zed: 11/27/2	024		
Aroclor-1016	3.33	0.25	mg/kg	4.926	ND	68	10-111	2	28
Aroclor-1260	3.40	0.25	mg/kg	4.926	ND	69	10-132	5	28
Surrogate(s)									
Surrogate: Tetrachloro-m-xylene				0.4926		67	10-112		
Surrogate: Decachlorobiphenyl				0.4926		61	10-123		

Attention: Mitch Smith

200 Route 130, Cinnaminson, NJ, 08077 Telephone: 856-858-4800 Fax:856-786-5974

EMSL-CIN-01

Project Name: Pre-Demo RBM Survey (52-54 Canal Street)

EMSL Order ID: 012437007 LIMS Reference ID: AC37007

EMSL Customer ID: LUEN50

50514-07

280 East Broad St., Suite 170

LU Engineers [LUEN50] 280 East Broad St., Suite 170 Rochester, NY 14604 (585) 385-7417

msmith@luengineers.com

Customer PO:

 EMSL Sales Rep:
 Gillian Egiazarov

 Received:
 11/13/2024 09:20

 Reported:
 12/06/2024 14:05

Certified Analyses included in this Report

Analyte	CAS #	Certifications	
SW846-8082A in Solid			
Aroclor-1016	12674-11-2	NJDEP,NYSDOH,PADEP,California ELAP	
Aroclor-1221	11104-28-2	NJDEP,NYSDOH,PADEP,California ELAP	
Aroclor-1232	11141-16-5	NJDEP,NYSDOH,PADEP,California ELAP	
Aroclor-1242	53469-21-9	NJDEP,NYSDOH,PADEP,California ELAP	
Aroclor-1248	12672-29-6	NJDEP,NYSDOH,PADEP,California ELAP	
Aroclor-1254	11097-69-1	NJDEP,NYSDOH,PADEP,California ELAP	
Aroclor-1260	11096-82-5	NJDEP,NYSDOH,PADEP,California ELAP	
Aroclor-1262	37324-23-5	NJDEP,NYSDOH,PADEP	
Aroclor-1268	11100-14-4	NJDEP,NYSDOH,PADEP	

List of Certifications

Code	Description	Number	Expires
PADEP	Pennsylvania Department of Environmental Protection	68-00367	11/30/2025
NYSDOH	New York State Department of Health	10872	04/01/2025
NJDEP	New Jersey Department of Environmental Protection	03036	06/30/2025
MADEP	Massachusetts Department of Environmental Protection	M-NJ337	06/30/2025
CTDPH	Connecticut Department of Public Health	PH-0270	06/23/2026
California ELAP	California Water Boards	1877	06/30/2025
AIHA LAP	EMSL Analytical, Inc. Cinnaminson, NJ AIHA-LAP, LLC-ELLAP Accredited	100194	01/01/2025
A2LA	A2LA Environmental Certificate	2845.01	07/31/2026

Please see the specific Field of Testing (FOT) on www.emsl.com for a complete listing of parameters for which EMSL is certified.

200 Route 130, Cinnaminson, NJ, 08077 Telephone: 856-858-4800 Fax:856-786-5974

EMSL-CIN-01

Attention: Mitch Smith

LU Engineers [LUEN50] 280 East Broad St., Suite 170 Rochester, NY 14604

(585) 385-7417

D - 61 -- 141 - --

msmith@luengineers.com

EMSL Order ID: 012437007 LIMS Reference ID: AC37007

EMSL Customer ID: LUEN50

Project Name: Pre-Demo RBM Survey (52-54 Canal Street)

50514-07

Customer PO:

 EMSL Sales Rep:
 Gillian Egiazarov

 Received:
 11/13/2024 09:20

 Reported:
 12/06/2024 14:05

Notes and Definitions

Item	Definition
(Dig)	For metals analysis, sample was digested.
[2C]	Reported from the second channel in dual column analysis.
DF	Dilution Factor
MDL	Method Detection Limit.
ND	Analyte was NOT DETECTED at or above the detection limit.
NR	Spike/Surrogate showed no recovery.
Q	Qualifier
RL	Reporting Limit
Wet	Sample is not dry weight corrected.
%REC	Percent Recovery
RPD	Relative Percent Difference
Source	Sample that was matrix spiked or duplicated

Measurement of uncertainty and any applicable definitions of method modifications are available upon request. Per EPA NLLAP policy, sample results are not blank corrected.

EMSL ANALYTICAL, INC. LABORATORY-PRODUCTS-TRAINING

Environmental Chemistry Chain of Custody

EMSL Order Number / Lab Use Only

200 Route 130 North

Cinnaminson, NJ 08077 PHONE: 1-800-220-3675 EMAIL: c@emsl.com

AC37007			
"Colw !	101		

Phone: 585-385-7417 Email(s) for Report: msmith@luengineers.com Per-Demo RBM Survey (52-54 Canal Street) So514-07 MSL LIMS Project ID: State of Connecticut (CT) must select project Location: msmith@luengineers.com State of Connecticut (CT) must select project Location: msmith@luengineers.com State of Connecticut (CT) must select project Location: msmith@luengineers.com State of Connecticut (CT) must select project Location: msmith@luengineers.com State Reporting R yes Prospilance? Yes No State Reporting R yes ID: State Reporting R yes Prospilance? No. of Samples Ollected by (Check One): EMSL VILLENT Samples Received Chilled? Yes Sampled By Name: Prompled By Name: Promp				W.	1									ing ID:	Bill									_			stomer ID:	C
Street Address: 280 East Broad St., Suite 170 City, State, Zip: Rochester NY 14604 Country: US City, State, Zip: Rochester NY 14604 Country: US City, State, Zip: Rochester NY 14604 Country: US State, Zip: Rochester NY 14604 Country: US City, State, Zip: Rochester NY 14604 Country: US State, Zip: Rochester NY 14604 Country:				To Line	14.				S	neers	Engir	LUE	lame: L	mpany N	c Co	864							rs	ineer	Engi	ne: LU E	mpany Name	io Co
Street Address: 280 East Broad St., Suite 170 State, Zip: Rochester					7				700		1													mith	h Sr	Mitch	ntact Name:	
Client Sample ID Country US US Country US US US US US US US U	- 1	\ \		Tel		70	ite 1	t Sui	ad St.	-1.0-001		Annual Control	-	eet Addr	Str					0	Suite 17	St.,	oad S	st Bro	Eas	280	eet Address:	St
Phone: 585-385-7417 Email(s) for Report: msmith@luengineers.com Per-Demo RBM Survey (52-54 Canal Street) So514-07 MSL LIMS Project ID: State of Connecticut (CT) must select project Location: msmith@luengineers.com State of Connecticut (CT) must select project Location: msmith@luengineers.com State of Connecticut (CT) must select project Location: msmith@luengineers.com State of Connecticut (CT) must select project Location: msmith@luengineers.com State Reporting R yes Prospilance? Yes No State Reporting R yes ID: State Reporting R yes Prospilance? No. of Samples Ollected by (Check One): EMSL VILLENT Samples Received Chilled? Yes Sampled By Name: Prompled By Name: Promp	S	Country: US		14604	NY								-	y, State,	D Cit		US	Country:	14604	ΙΥ	N			ter	hest	Roch	y, State, Zip:	Ci
Email(s) for Report: msmith@luengineers.com Email(s) for Invoice: msmith@luengineers.com Email(s) for Invoice: msmith@luengineers.com Email(s) for Invoice: msmith@luengineers.com Purchase Order:									7					one:	Ph Ph								17	5-741	-385	585-	one:	nst(
Pre-Demo RBM Survey (52-54 Canal Street) Purchase Order: International Commercial (Taxable) Purchase Order: International Commercial (Taxable) Purchase Order: International Commercial (Taxable) Residential (Non-Taxable) Residential (Non-Taxabl					om	ers.c	nee	enair						ail(s) for	Em		om	ineers.c	@lueng	dillard	s.com, r	neer	engir	@lue	mith	eport: msn	nail(s) for Rep	Er
US State where samples collected: NY State of Connecticut (CT) must select project location: Samples for NPDES? Yes No If Yes, for NPDES? Yes No Samples Collected by (Check One): Sampled By Name: Purn-Around-Time (TAT) Standard Turn-Around-Time: Client Sample ID Sample By Signature: Sampled By Signature: Samp								3	<u></u>						-2													
Samples collected: NY Commercial (Taxable) Residential (Non-Taxable) Residenti			antin.	project les	ust salset	(CT) o	actions	Conno	State of (o whore	IC Stat	T ₁	4-07	303		Ollect	Cariai	JZ-3.	Jy (J.	Juive	JIVI C	,,,,,		
Comment Comm	axable)								State of C	3		Y	d: NY															
Sampled By Name: Client Sample ID Client Sample ID Collected Collecte	Required?	tate Reporting Re	Sta												4.3		No	. [☐ Ye] No	1	Yes			
Sampled By Name: R.Ditland / E. Conzalez Sampled By Signature: The following TATs are subject to Lab approval. Call lab to confirm TAT before submittat: Client Sample ID B B Client Sample ID No. of Sample Sample ID No. of Tame ID No. of Sample ID No. of Sample ID No. of Sample ID No. of Tame ID No. of Tame ID No. of Sample ID No. of Tame	No	Yes 🗸			· · · ·			la/a\ Ta			7			_	гу)	3 0			Ш		10-100-110-110-110-110-110-110-110-110-	_]		V-82-1/2	Ш	ONIOSCITATI	100 to
Turn-Around-Time (TAT) Standard Turn-Around-Time: Client Sample ID See Solid Asair SL-Sludge O=Other COllected Colle					AND STREET, TANKS THE COURSE		TO CHEST THE	THE RESERVE OF THE PARTY OF THE	THE PROPERTY AND ADDRESS.		No	~		Yes		crimear	received (ISL	E):	One)			
Turn-Around-Time (TAT) Standard Turn-Around-Time: Matrix Preservative List Test(s) Needed (Write in test below, then check on sample line:) Client Sample ID Date / Time Sesoil A-Air SL-Sludge O=Other OCB-5 PCB-7 DCB-12 DCB-14 Natrix Preservative List Test(s) Needed (Write in test below, then check on sample line:) W=Water Sesoil A HICL 2 HNO3 3 Hayso4 4 ICE 5 Other Describe below in Special Instructions PCB-12 DCB-14 Natrix Preservative List Test(s) Needed (Write in test below, then check on sample line:) Comment W=Water Sesoil A HICL 2 HNO3 3 Hayso4 4 ICE 5 Other Describe below in Special Instructions White Cau White Cau White Cau White Cau White Cau Comment OCB-12 COMMENT Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.)														1	IL	0	164	nature:	ed By Sig	Samp	edez	700	. G	16	bu	2. Dilla	d By Name:	ample
Client Sample ID B B Client Sample ID Client Sample ID B Collected Col	1 Day	2 Days	Г	3 Days	Days	4	ek	1 Wee		val.	appro	to Lab a	ubject to	AT's are s	owing Ta	The foll		2 Weeks	V	d-Time:						ne (TAT)	round-Time	urn-/
Client Sample ID B B Comment Commen				13)	ample line	k on s	chec	v. then	t below.	in tes	2000						vative	Prese	latrix	N								ij.
PCB-7 PCB-12 PCB-14 V 11-7-24 O V 11-7-24	nts	Comments			Test 8:	Test 7:		Test 6:		Test 5:		Test 4:	200			E C	below in	2 HNO3 3 H2SC 4 ICE 5 Other Describ	il ludge	S=Sc A=Air SL=S		D	Grab	Comp		ple ID	Client Samp	
PCB-7 PCB-12 PCB-14 11-7-24 O White Window White Caul White Caul White Caul Caul Caul Caul Caul Caul Caul Caul	ılk	hite Caul	۸ŀ	$\square \lor$						7		7				V	/			10	1-7-24	1 1	V				3-5	PCE
PCB-12 PCB-14 V 11-7-24 O V 11-7-24 O V 11-7-24 O Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.) Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.)										1						V				10	1-7-24	1	V				3-7	PCE
PCB-14 V 11-7-24 O Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.) Grey Caulk		Salves Accessment			1				\vdash	+	-		125			V		/		-		-	V	П			3-12	PCE
Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.)						1	\dashv	 	\vdash	++	_	1	1			-				-		-	V	П				_
01.46 Kecdi		Recidin				n, etc.)	tection	s of Det	s, Limits	ethods	ng Me	ocessin	ns, Pro	ecification	ple Spe	ts (Sam	equiremen	gulatory F	and/or R									
Reporting Populity and CC		Other (Descr	T)	s EDD	zresults	Hz		es	/erable:	Delive	Reduced	П		ts and QC	Resu	8	ults Only	✓ Res			nts:	men	g Require	Reporting	(Sept.
										ipt:	Rece	Upon	dition I	nple Con	Sar	T H	1120							EX	d E	Fee	of Shipment:	lethod
elinquished by: Pate/Time: 11-11-2024 @ 1200 Received by: Date/Time: 11-11-2024 @ 1200 Received by: Date/Time: 11-11-2024 @ 1200 Received by: Date/Time: 11-11-2024 @ 1200 Received by:	920	13/211/19	ime	Date/Tir					V	elle	NIN	Po	O		Red	1200		11 2 .	ime:	Date/1			l	laro	Dill	R. 3	shed by:	
elinquished by: Date/Time: Date/Time: Date/Time:		019701											44		_		4	11-202		-							chad hu	

Environmental Chemistry Chain of Custody

EMSL Order Number / Lab Use Only

AC37007

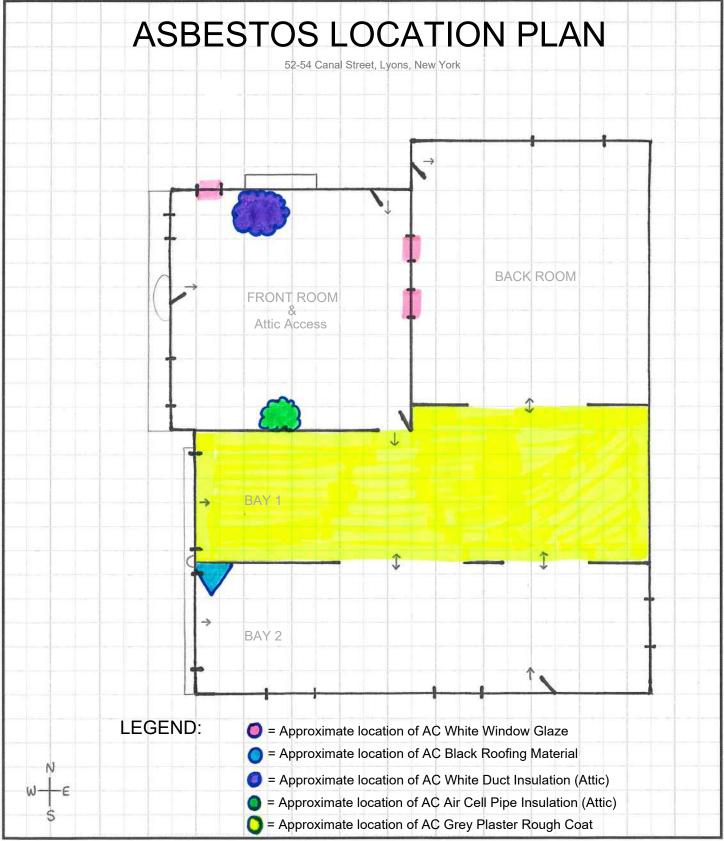
EMSL Analytical, Inc. 200 Route 130 North

Cinnaminson, NJ 08077 PHONE: 1-800-220-3675 EMAIL: c@emsl.com

	_		1											
~				Matrix	(Control of the control of the contr					e line:)				
Client Sample ID	Comp	Grab	Date / Time Collected	W=Water S=Soil A=Air SL=Sludge O=Other	1 HCL 2 HNO3 3 H2SO4 4 ICE 5 Other Describe in Special Instructions	PCB Caulk	Test 2:	Test 3:	Test 4:	Test 5:	Test 6:	Test 7:	Test 8:	Comments
PCB-33		~	11-7-24	0		~								White Window Glaze
PCB-40		~	11-7-24	0		~								White Window Glaze
	-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				7							
				¥		'								
Method of Shipment:				,			Sample Co	ondition Up	on Receipt					
Relinquished by:				Date/Time:			Received I	non	relly	,			Date 1/	13 a4 0920
Relinquished by:				Date/Time:			Received t	oy:	X				Date	Time

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this Chain of Custody by reference in their entirety. Submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer.

ATTACHMENT D


Asbestos Location Plans and Asbestos Inspection Summary Table

ASBESTOS, LEAD PAINT, and PCB CAULK SURVEY

VACANT STRUCTURE 52-54 CANAL STREET LYONS, NEW YORK

Asbestos Inspection Summary Table Pre-Demolition RBM Survey 52-54 Canal Street, Lyons, New York

Homogeneous Area Description	Homogeneous Area ID No.	Floor & Location	Tested or Assumed	ACM (Y/N)	Approx. Quantity
White Window Glaze	7	North and East Walls of Front Room	Tested	Y Total	160 LF 160 LF
Black Roofing Material	15	Under Metal Siding on South Gable	Tested	Y Total	16 SF 16 SF
White Duct Insulation	29	Attic, on Heat Duct	Tested	Y Total	2 LF 2 LF
Air Cell Pipe Insulation	31	Attic, South Wall, on Pipe	Tested	Y Total	2 LF 2 LF
Grey Plaster Rough Coat	37	Bay 1, Ceiling and Partial Northwest Wall	Tested	Y Total	392 SF 392 SF

ATTACHMENT E

Site Photographs

ASBESTOS, LEAD PAINT, and PCB CAULK SURVEY

VACANT STRUCTURE 52-54 CANAL STREET LYONS, NEW YORK 52-54 Canal Street (50514-07) 12/11/2024

1

Project: 52-54 Canal Street-Vacant Structure 50514-07

Date: 11/7/2024, 8:01am Creator: Ryan Dillard

2

Project: 52-54 Canal Street-Vacant Structure 50514-07

Date: 11/7/2024, 8:14am Creator: Ryan Dillard

3

Project: 52-54 Canal Street-Vacant Structure 50514-07

Date: 11/7/2024, 10:26am Creator: Ryan Dillard

4

Project: 52-54 Canal Street-Vacant Structure 50514-07

Date: 11/7/2024, 11:34am Creator: Ryan Dillard 52-54 Canal Street (50514-07) 12/11/2024

5

Project: 52-54 Canal Street-Vacant Structure 50514-07

Date: 11/7/2024, 11:35am Creator: Ryan Dillard

6

Project: 52-54 Canal Street-Vacant Structure 50514-07

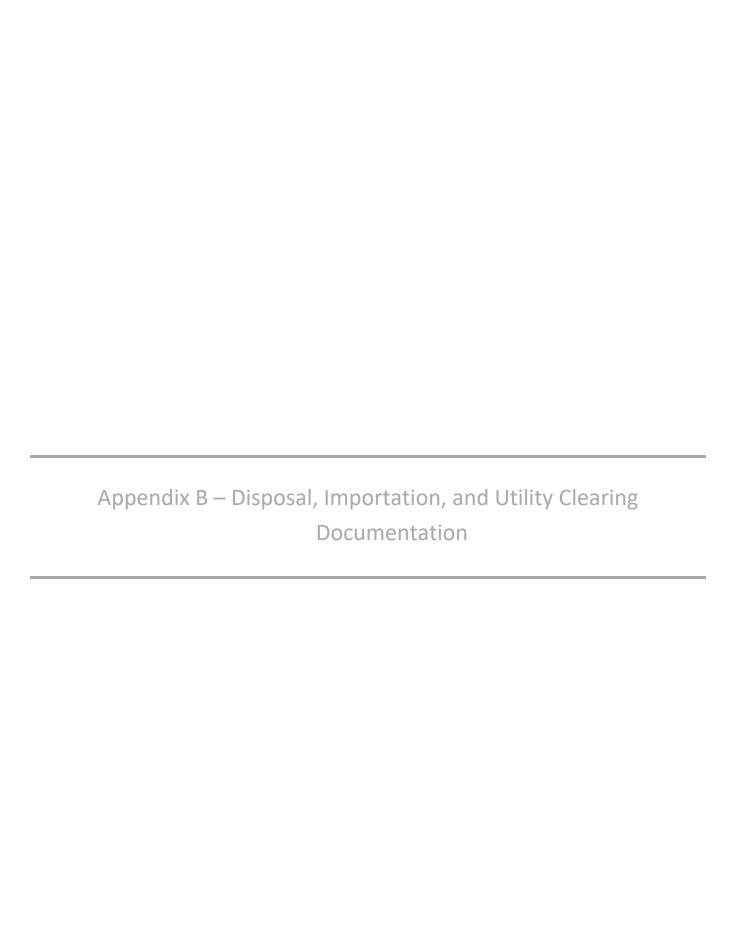
Date: 11/7/2024, 11:40am Creator: Ryan Dillard


7

Project: 52-54 Canal Street-Vacant Structure 50514-07

Date: 11/7/2024, 11:42am Creator: Ryan Dillard

8


Project: 52-54 Canal Street-Vacant Structure 50514-07

Date: 11/7/2024, 12:29pm Creator: Ryan Dillard 52-54 Canal Street (50514-07) 12/11/2024

Project: 52-54 Canal Street-Vacant Structure 50514-07

Date: 11/7/2024, 12:29pm Creator: Ryan Dillard

846 MACEDON CENTER ROAD MACEDON NY 14502

(315) 986-8900 DMV#710688

Rec ID:		79093 LAS	TNAME	SESS	SLER EN	/IRONMENTA	AL SE	RVIC FIRSTN	AME				
DD1	1330 RES	ARCH FOREST				ADD2		C&D \$.047/LB	-OK T	O BILI	L /PAY BY	CHECK	P
YTI	WALWOR	TH		ST.	TE N	Y Z	ZIP	14568			ClerkID	BS	
RANSAC	TION TYPE:	PURCHASE	TICKE	Γ#	250000	21 DATE	1	1/2/2025	TIM	E	2:01 PM	1	
CODE	i	MATERIAL	WE	IGHT	UNIT	PRICE		NET		TAX:			
37S	SHEARIN	NG STEEL		2660	LB	\$0.06	00	\$15	59.60	E	RE	MARKS	
					LB	\$0.00	000		0.00	E	2	リービ	016
					LB	\$0.00	000		\$0.00	E		•	
					LB	\$0.00	000	Ş	0.00	E	LIF	TS	
			1 🗆		LB	\$0.00	000		00.08	E		ه د	(
					LB	\$0.00	000		0.00	E	5 2	(41	var.
					LB	\$0.00	000	\$	0.00	E	52 L>	ONS,	NY
					LB	\$0.00	000	5	\$0.00	E		-	
SUBT	OTAL	SUBTOTAL N	XAT C	TC	TAL TAX	TO	TAL		\$15	9.60			
\$0.0	00	\$159.60			\$0.00	PAID	CR	EDIT	CH	IECK#	# :		

I, the undersigned, do hereby guarantee lawful possession of the material/items listed above, and the right to sell the same.

-	900	1070	400	-	

846 MACEDON CENTER ROAD MACEDON NY 14502 (315) 986-8900 DMV#710688

		_	-	
1	01	1	0	١
1/	41	9	8)	

Cust ID:	79093 LAST	NAME	SESS	SLER ENVIR	ONMENTAL S	ERVIC FIRSTNAME		
ADD1	1330 RESARCH FOREST				ADD2	C&D \$.047/LB-OK	TO BILL	_/PAY BY CHECK P
CITY	WALWORTH		STA	ATE NY	ZIP	14568		ClerkID BS
TRANSAC	CTION TYPE: SALE	TICKET	Г#	25000017	DATE	1/2/2025 TIM	ΛE	1:30 PM
CODE	MATERIAL	WEI	IGHT	UNIT	PRICE	NET	TAX:	
41	C&D PAD	TE	4300	LB	\$0.0470	\$202.10	E	REMARKS
				LB	\$0.0000	\$0.00	E	24-E016
				LB	\$0.0000	\$0.00	Е	
				LB	\$0.0000	\$0.00	Е	CONCRETE
				LB	\$0.0000	\$0.00	Е	CONCRETE 57 CANAL LYONS, NY
				LB	\$0.0000	\$0.00	E	57 CANAL
				LB	\$0.0000	\$0.00	E	WOVS, NY
				LB	\$0.0000	\$0.00	E	
SUBT	OTAL SUBTOTAL NO	TAX	TC	OTAL TAX	TOTAL	. \$2	02.10	
\$0.	00 \$202.10			\$0.00	PAID BI	LL C	HECK#	

I, the undersigned, do hereby absolve Alpco of any liability related to my purchase and/or use of the items/material listed above.lt is understood that this sale is final and "as is"

Signature:

Signature:

庆教 8		*					
NON-HAZARDOUS WASTE MANIFEST	1. Generator ID Number	2. Page 1 of 3. Er	nergency Respons			Tracking Nun	
5. Generator's Name and Mail Wayne Count 26 Church Str Generator's Profes. NY 14	y cet 489 585,617,5710		Mayne Cor S2 Canal S Lyons, NY	is (il different the unity Troot	n mailing add	dress)	Ý
6. Transporter 1 Company Nan	ntal Service Gro		595.6720			m9869	03904
8. Designated Facility Name an		¥			U.S. EPA II	33230	
Facility's Proba-	, NY 14150	716.695.67	20	j	MA	7RO 0 0 0	30809
9. Waste Shipping Name		Land Barre M.	10. Contr	1	11. Total	12. Unit	
Non RCR Oil)	A Non DOT Regulate	d, (Bydrenlic	No.	D _M C	Quantity 555	G Wt./vol.	
2.		9	10				
3.							
4.		A Secondary Control					
4 - FORCE CERTIFICAL	3 - 4 - SON: 1 certify the materials, described ab	3 - 4 - ove on this manifest are not subject to feder	al regulations for re		lisposal of Ha	zardous Wast	ŧ.
September Stringer Printed/Typ	Barand	Signature	-13	an			Month Day Ye
5. International Shipments ransporter Signature (for exports 6. Transporter Acknowledgment		Export from U.S.	Port of entr	F-15. January		,	
ansporter 1 Printed/Typed Nam		Signature					Month Day Yes
anaporter 2 Printed/Typed Nam EQU Discrepancy	men Velost	Signature	ef.	WA!	2		Month Day Yea
e. Discrepancy Indication Space	Quantity		Residue		Partial Rejec	etion	Full Rejection
 Alternate Facility (or Generate citty's Phone; 		Manife	est Reference Nun		S. EPA ID N	nuper	
c. Signature of Alternate Facility	(or Generator)		* + _ A				Month Day Year
Designated Facility Owner or O	perator: Certification of receipt of material	s covered by the manifest except as noted	n Item 17a				
nted Pyped Name	Rainville	Signature	was !	1	1		Month Day Year
	DESI	GNATED FACILITY TO G	ENERATO	OR I			

PAGE: 1

DATE: 12/30/2024 10:43:50 AM

INVOICE #: 71882

CUSTOMER#: 107394

LOCATION: 1

Q's Power Equipment, Inc. 1442 Welcher Road Newark, NY 14513 USA Phone #: (315)331-0589 Fax #: (315)257-9417

PHONE #: (585)944-3310

CELL #: (585)944-3310

FAX #: P.O.#: 24-EO16

TERMS: Cash SALES ORDER#: 36383

SALES TYPE: Sales

CP: AlexQ

SALES REP: AlexQ

SHIP TO

FRANK THOMAS **52 CANAL STREET LYONS, NY 14489 US**

BILL TO 107394

FRANK THOMAS **52 CANAL STREET** LYONS, NY 14489 US

MFR	PRODUCT NUMBER	DESCRIPTION	SOLD	B/O	PRICE	NET	TOTAL
MISC	CRUSHER RUN #1	CRUSHER RUN #1 PER YARD	3	0	\$40.00	\$40.00	\$120.00
****	DELIVERY-MAT	DELIVERY MATERIALS	1	0	\$50.00	\$50.00	\$50.00

Thank you for your business! No returns on electrical parts

No returns on wholegoods or attachments

No returns without a receipt, IN STORE CREDIT ONLY. NO CASH/CREDIT REFUNDS

No returns after 7 days for parts

Returned items incur a 20% restocking fee

Upon payment, you acknowledge and accept the manufacturer's terms, conditions, & warranties.

Storage rate is \$20 per day after 5 business days

Return check fee \$ 65.00

SUBTOTAL: \$170.00

> TAX: \$13.60

INVOICE TOTAL:

\$183.60

12/30/2024 PMT CREDIT CARD: 9806

\$183.60

AMOUNT DUE: \$0.00

Picked Up By:

Ticket: 12204-000-889-00 Type: Regular Previous Ticket:

State: NY County: WAYNE Place: LYONS

Addr: From: 52 To: Cross: From: To: CANAI Name: ST

Name:

Offset:

Locate: ENTIRE PROPERTY NearSt: GENEVA ST & CLYDE RD

Means of Excavation: MINI EXCAVATOR Blasting: N

Site marked with white: N Boring/Directional Drilling: N Within 25ft of Edge of Road: N

Work Type: HYDRAULIC LIFT REMOVAL

Estimated Work Complete Date: 12/27/2024

Depth of excavation: 6 FEET

Site dimensions: Length 8 FEET Width 10 FEET

Start Date and Time: 12/26/2024 07:00

Must Start Bv: 01/10/2025

Contact Name: FRANK THOMAS

Company: SESSLER ENVIRONMENTAL SERVICES

Addr1: 1330 RESEARCH FORST Addr2:

Citv: MACEDON State: NY Zip: 14502

Phone: 585-944-3310 Fax:

Email: fthomas@sesslerenv.com

Field Contact: FRANK THOMAS

Email: fthomas@sesslerenv.com Alt Phone: 585-944-3310

Working for: MONTROSE ENVIRONMENTAL

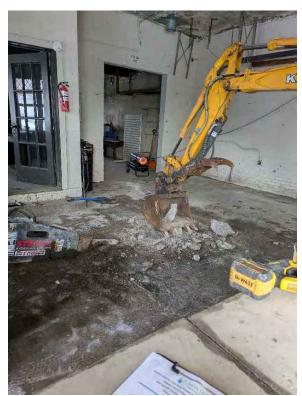
Comments: Lookup Type: PARCEL

Members:

NYSEG GENEVA ELECTRIC 800-262-8600 NYSEG GENEVA GAS 800-262-8600 WAYNE COUNTY WATER & SEWER AUTHORITY 315-986-1929

* Responses are current as of 01/21/2025 01:51 PM

Service Area	<u>Utility Type(s)</u>	<u>Contact</u>	Alternate Contact	Emergency Contact	Positive Response
NYSEG GENEVA ELECTRIC NYSEG / GENEVA ELEC	ELECTRIC	USIC LOCATING2 (800) 262-8600	USIC LOCATING2	USIC LOCATING2	CLEAR, NO FACILITIES WITHIN 1 5 FT OF THE EXCAVATOR DEFINE D WORK AREA
					Date: 12/27/2024 08:03 AM
NYSEG GENEVA GAS NYSEG / GENEVA GAS	GAS	USIC LOCATING2 (800) 262-8600	USIC LOCATING2	USIC LOCATING2	CLEAR, NO FACILITIES WITHIN 1 5 FT OF THE EXCAVATOR DEFINE D WORK AREA Date: 12/27/2024 08:03 AM 2024/12/24 15:12 TICKET DELAY ED 48 HOURS. 2024/12/24 15:12 RESCHEDULE APPROVED BY: FRANK THOMAS 585-944-3310 2024/12/26 17:55 CALLER IS REQ UESTING AN ETA ON THIS TICKE T. WILL BE ONSITE TOMORROW AT 8AM. PLEASE GIVE THEM A C ALL WHEN YOU GET A CHANCE, THANKS! 2024/12/27 08:02 WORKING INS IDE THE BUILDING CONTRATOR ON SITE REMOVING HYDROLIC L IFT IN 2 OLD BAY GARAGE AREA S. ELECTRIC OH NOT MARKED AND GS NOT LONGER ACTIVE TO BUILDING
WAYNE COUNTY WATER & SEWER AUTHORITY WAYNE CTY WTR & SWR AUTH	SANITARY SEWER, WATER	JASON MONROE (315) 986-1929	JASON MONROE	JASON MONROE	CLEAR, NO FACILITIES WITHIN 1 5 FT OF THE EXCAVATOR DEFINE D WORK AREA Date: 12/23/2024 02:39 PM



1. North lift pre-removal.

2. South lift pre-removal.

3. Removal of concrete at north lift. Facing northeast.

4. Removed north lift staged on poly sheeting.

5. Excavation at north lift. Brick fragments shown.

6. Excavated soil from north lift removal.

7. Removed south lift and hydraulic oil tank staged on poly sheeting.

8. Excavation at south lift. Brick fragments and hydraulic system piping shown.

9. Excavated soil from south lift removal.

ANALYTICAL REPORT

Lab Number: L2476274

Client: Montrose Environmental

100 S. Clinton Ave

Suite 2330

Rochester, NY 14604

ATTN: Katie Nelson Phone: (716) 329-0672

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112 Report Date: 01/24/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number:

L2476274

Report Date:

01/24/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2476274-01	EB-01	SOIL	52-54 CANAL ST. LYONS, NEW YORK	12/27/24 14:00	12/27/24
L2476274-02	ESW-01	SOIL	52-54 CANAL ST. LYONS, NEW YORK	12/27/24 14:15	12/27/24
L2476274-03	ESW-02	SOIL	52-54 CANAL ST. LYONS, NEW YORK	12/27/24 14:30	12/27/24

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274
Project Number: 037112 Report Date: 01/24/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274
Project Number: 037112 Report Date: 01/24/25

Case Narrative (continued)

Report Revision

January 24, 2025: At the client's request, the Volatile Organics and Semivolatile Organics reporting lists have been changed.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

The WG2015218-4/-5 MS/MSD recoveries, performed on L2476274-01, are below the acceptance criteria for 3,3'-dichlorobenzidine (13%/9%) due to the concentration of this compound in the MS/MSD falling below the reported detection limit.

The WG2015218-4/-5 MS/MSD recoveries, performed on L2476274-01, is below the acceptance criteria for 2,4-dinitrophenol (0%/0%) and 4,6-dinitro-o-cresol (7%); however, they have been identified as "difficult" analytes. The results of the associated sample are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

ENDOW Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative Date: 01/24/25

Pace

ORGANICS

VOLATILES

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

01/24/25

Report Date:

SAMPLE RESULTS

Lab ID: L2476274-01

Client ID: EB-01

Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Date Received: Field Prep:

Lab Number:

Date Collected:

12/27/24 14:00 12/27/24

L2476274

Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260D Analytical Date: 01/06/25 10:57

Analyst: AJK 91% Percent Solids:

Woltatile Organics by EPA 5035 Low - Westborough Lab Methylene chloride ND ug/kg 5.2 2.4 1 1,1-Dichloroethane ND ug/kg 1.0 0.15 1 Chloroform ND ug/kg 1.6 0.14 1 Carbon tetrachloride ND ug/kg 1.0 0.24 1 Carbon tetrachloropropane ND ug/kg 1.0 0.14 1 Dibromochloromethane ND ug/kg 1.0 0.14 1 1,12-Trichloroethane ND ug/kg 1.0 0.28 1 1,12-Trichloroethane ND ug/kg 0.52 0.20 1 Chlorobenzane ND ug/kg 0.52 0.13 1 Trichlorofthoromethane ND ug/kg 0.52 0.13 1 L-2-Dichloroethane ND ug/kg 0.52 0.17 1 Bromodichloromethane ND ug/kg 0.52 0.11 1 Is	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/kg 1.0 0.15 1 Chloroform ND ug/kg 1.6 0.14 1 Carbon tetrachloride ND ug/kg 1.0 0.24 1 1,2-Dichloropropane ND ug/kg 1.0 0.13 1 Dibromochloromethane ND ug/kg 1.0 0.28 1 1,1,2-Trichloroethane ND ug/kg 1.0 0.28 1 Tetrachloroethane ND ug/kg 0.52 0.20 1 Chlorobenzene ND ug/kg 0.52 0.20 1 Chlorobenzene ND ug/kg 0.52 0.13 1 Trichloroethane ND ug/kg 0.52 0.13 1 Tichlorofuloromethane ND ug/kg 0.52 0.13 1 Bromodichloromethane ND ug/kg 0.52 0.17 1 Bromodichloromethane ND ug/kg 0.52 0.1	Volatile Organics by EPA 5035 Low -	Westborough Lab					
Chloroform ND ug/kg 1.6 0.14 1 Carbon tetrachloride ND ug/kg 1.0 0.24 1 1,2-Dichloropropane ND ug/kg 1.0 0.13 1 Dibromochloromethane ND ug/kg 1.0 0.14 1 1,1,2-Trichloroethane ND ug/kg 1.0 0.28 1 1,1,2-Trichloroethane ND ug/kg 0.52 0.20 1 Chlorobenzene ND ug/kg 0.52 0.13 1 Trichloroethane ND ug/kg 0.52 0.13 1 1,1-Trichloroethane ND ug/kg 4.2 0.72 1 1,1-Trichloroethane ND ug/kg 0.52 0.17 1 Bromoform ND ug/kg 0.52 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.52 0.16 1 Bromoform ND ug/kg 0.52 0.17	Methylene chloride	ND		ug/kg	5.2	2.4	1
Carbon tetrachloride ND ug/kg 1.0 0.24 1 1,2-Dichloropropane ND ug/kg 1.0 0.13 1 Dibromochloromethane ND ug/kg 1.0 0.14 1 1,1,2-Trichloroethane ND ug/kg 1.0 0.28 1 Tetrachloroethane ND ug/kg 0.52 0.20 1 Chlorobenzene ND ug/kg 0.52 0.20 1 Chlorobenzene ND ug/kg 0.52 0.13 1 Trichlorofloroethane ND ug/kg 0.52 0.13 1 1,2-Dichloroethane ND ug/kg 1.0 0.27 1 1,1,1-Trichloroethane ND ug/kg 0.52 0.17 1 Bromodichloromethane ND ug/kg 0.52 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.52 0.16 1 Bromodichloroethane ND ug/kg 0.52<	1,1-Dichloroethane	ND		ug/kg	1.0	0.15	1
1,2-Dichloropropane ND ug/kg 1.0 0.13 1 Dibromochloromethane ND ug/kg 1.0 0.14 1 1,1,2-Trichloroethane ND ug/kg 1.0 0.28 1 Tetrachloroethane ND ug/kg 0.52 0.20 1 Chlorobenzene ND ug/kg 0.52 0.13 1 Trichlorothane ND ug/kg 0.52 0.13 1 Trichlorothane ND ug/kg 0.52 0.13 1 1,2-Dichloroethane ND ug/kg 1.0 0.27 1 1,1,1-Trichloroethane ND ug/kg 0.52 0.17 1 Bromodichloromethane ND ug/kg 0.52 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.52 0.16 1 Bromoform ND ug/kg 0.52 0.17 1 Benzene ND ug/kg 0.52 0.17	Chloroform	ND		ug/kg	1.6	0.14	1
Dibromochloromethane ND ug/kg 1.0 0.14 1 1,1,2-Trichloroethane ND ug/kg 1.0 0.28 1 Tetrachloroethane ND ug/kg 0.52 0.20 1 Chlorobenzene ND ug/kg 0.52 0.13 1 Trichlorofluoromethane ND ug/kg 4.2 0.72 1 1,2-Dichloroethane ND ug/kg 1.0 0.27 1 1,1,1-Trichloroethane ND ug/kg 0.52 0.17 1 Bromodichloromethane ND ug/kg 0.52 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.52 0.11 1 dis-1,3-Dichloropropene ND ug/kg 0.52 0.16 1 Bromoform ND ug/kg 0.52 0.16 1 Bromoform ND ug/kg 0.52 0.17 1 Benzene ND ug/kg 0.52 0.1	Carbon tetrachloride	ND		ug/kg	1.0	0.24	1
1,1,2-Trichloroethane ND ug/kg 1.0 0.28 1 Tetrachloroethene ND ug/kg 0.52 0.20 1 Chlorobenzene ND ug/kg 0.52 0.13 1 Trichloroftuoromethane ND ug/kg 4.2 0.72 1 1,2-Dichloroethane ND ug/kg 1.0 0.27 1 1,1,1-Trichloroethane ND ug/kg 0.52 0.17 1 Bromodichloromethane ND ug/kg 0.52 0.11 1 trans-1,3-Dichloropropene ND ug/kg 1.0 0.28 1 cis-1,3-Dichloropropene ND ug/kg 0.52 0.16 1 Bromoform ND ug/kg 0.52 0.16 1 Bromoform ND ug/kg 0.52 0.17 1 Benzene ND ug/kg 0.52 0.17 1 Ethylbenzene ND ug/kg 1.0 0.56	1,2-Dichloropropane	ND		ug/kg	1.0	0.13	1
Tetrachloroethene ND ug/kg 0.52 0.20 1 Chlorobenzene ND ug/kg 0.52 0.13 1 Trichlorofluoromethane ND ug/kg 4.2 0.72 1 1,2-Dichloroethane ND ug/kg 1.0 0.27 1 1,1,1-Trichloroethane ND ug/kg 0.52 0.17 1 Bromodichloromethane ND ug/kg 0.52 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.52 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.52 0.16 1 Bromoform ND ug/kg 4.2 0.26 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.52 0.17 1 Benzene ND ug/kg 0.52 0.17 1 Toluene ND ug/kg 1.0 0.56 1 Ethylbenzene ND ug/kg 1.0 0.15 <td>Dibromochloromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.0</td> <td>0.14</td> <td>1</td>	Dibromochloromethane	ND		ug/kg	1.0	0.14	1
Chlorobenzene ND ug/kg 0.52 0.13 1 Trichloroftuoromethane ND ug/kg 4.2 0.72 1 1,2-Dichloroethane ND ug/kg 1.0 0.27 1 1,1,1-Trichloroethane ND ug/kg 0.52 0.17 1 Bromodichloromethane ND ug/kg 0.52 0.11 1 trans-1,3-Dichloropropene ND ug/kg 1.0 0.28 1 cis-1,3-Dichloropropene ND ug/kg 0.52 0.16 1 Bromoform ND ug/kg 0.52 0.16 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.52 0.17 1 Benzene ND ug/kg 0.52 0.17 1 Toluene ND ug/kg 1.0 0.56 1 Ethylbenzene ND ug/kg 1.0 0.15 1 Chloromethane ND ug/kg 2.1 0.60	1,1,2-Trichloroethane	ND		ug/kg	1.0	0.28	1
Trichlorofluoromethane ND ug/kg 4.2 0.72 1 1,2-Dichloroethane ND ug/kg 1.0 0.27 1 1,1,1-Trichloroethane ND ug/kg 0.52 0.17 1 Bromodichloromethane ND ug/kg 0.52 0.11 1 trans-1,3-Dichloropropene ND ug/kg 1.0 0.28 1 cis-1,3-Dichloropropene ND ug/kg 0.52 0.16 1 Bromoform ND ug/kg 0.52 0.16 1 Bromoform ND ug/kg 0.52 0.17 1 Bromoform ND ug/kg 0.52 0.17 1 Bromoform ND ug/kg 0.52 0.17 1 Benzene ND ug/kg 1.0 0.56 1 Ethylbenzene ND ug/kg 1.0 0.15 1 Chloromethane ND ug/kg 2.1 0.60 1	Tetrachloroethene	ND		ug/kg	0.52	0.20	1
1,2-Dichloroethane ND ug/kg 1.0 0.27 1 1,1,1-Trichloroethane ND ug/kg 0.52 0.17 1 Bromodichloromethane ND ug/kg 0.52 0.11 1 trans-1,3-Dichloropropene ND ug/kg 1.0 0.28 1 cis-1,3-Dichloropropene ND ug/kg 0.52 0.16 1 Bromoform ND ug/kg 4.2 0.26 1 Bromoform ND ug/kg 4.2 0.26 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.52 0.17 1 Benzene ND ug/kg 0.52 0.17 1 Toluene ND ug/kg 1.0 0.56 1 Ethylbenzene ND ug/kg 1.0 0.15 1 Chloromethane ND ug/kg 2.1 0.60 1 Vinyl chloride ND ug/kg 1.0 0.35 1	Chlorobenzene	ND		ug/kg	0.52	0.13	1
1,1,1-Trichloroethane ND ug/kg 0.52 0.17 1 Bromodichloromethane ND ug/kg 0.52 0.11 1 trans-1,3-Dichloropropene ND ug/kg 1.0 0.28 1 cis-1,3-Dichloropropene ND ug/kg 0.52 0.16 1 Bromoform ND ug/kg 4.2 0.26 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.52 0.17 1 Benzene ND ug/kg 0.52 0.17 1 Toluene ND ug/kg 1.0 0.56 1 Ethylbenzene ND ug/kg 1.0 0.15 1 Chloromethane ND ug/kg 4.2 0.97 1 Bromomethane ND ug/kg 2.1 0.60 1 Vinyl chloride ND ug/kg 1.0 0.35 1 Chloroethane ND ug/kg 1.0 0.25 1	Trichlorofluoromethane	ND		ug/kg	4.2	0.72	1
Bromodichloromethane ND ug/kg 0.52 0.11 1 trans-1,3-Dichloropropene ND ug/kg 1.0 0.28 1 cis-1,3-Dichloropropene ND ug/kg 0.52 0.16 1 Bromoform ND ug/kg 4.2 0.26 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.52 0.17 1 Benzene ND ug/kg 0.52 0.17 1 Toluene ND ug/kg 1.0 0.56 1 Ethylbenzene ND ug/kg 1.0 0.15 1 Chloromethane ND ug/kg 4.2 0.97 1 Bromomethane ND ug/kg 2.1 0.60 1 Vinyl chloride ND ug/kg 2.1 0.47 1 Chloroethane ND ug/kg 1.0 0.25 1 Chloroethene ND ug/kg 1.6 0.14 1	1,2-Dichloroethane	ND		ug/kg	1.0	0.27	1
trans-1,3-Dichloropropene ND ug/kg 1.0 0.28 1 cis-1,3-Dichloropropene ND ug/kg 0.52 0.16 1 Bromoform ND ug/kg 4.2 0.26 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.52 0.17 1 Benzene ND ug/kg 0.52 0.17 1 Toluene ND ug/kg 1.0 0.56 1 Ethylbenzene ND ug/kg 1.0 0.15 1 Chloromethane ND ug/kg 4.2 0.97 1 Bromomethane ND ug/kg 2.1 0.60 1 Vinyl chloride ND ug/kg 1.0 0.35 1 Chloroethane ND ug/kg 2.1 0.47 1 1,1-Dichloroethene ND ug/kg 1.6 0.14 1 1,1-Dichloroethene ND ug/kg 0.52 0.14 1	1,1,1-Trichloroethane	ND		ug/kg	0.52	0.17	1
cis-1,3-Dichloropropene ND ug/kg 0.52 0.16 1 Bromoform ND ug/kg 4.2 0.26 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.52 0.17 1 Benzene ND ug/kg 0.52 0.17 1 Toluene ND ug/kg 1.0 0.56 1 Ethylbenzene ND ug/kg 1.0 0.15 1 Chloromethane ND ug/kg 4.2 0.97 1 Bromomethane ND ug/kg 2.1 0.60 1 Vinyl chloride ND ug/kg 1.0 0.35 1 Chloroethane ND ug/kg 2.1 0.47 1 1,1-Dichloroethene ND ug/kg 1.0 0.25 1 trans-1,2-Dichloroethene ND ug/kg 1.6 0.14 1 Trichloroethene ND ug/kg 0.52 0.14 1 <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.52</td> <td>0.11</td> <td>1</td>	Bromodichloromethane	ND		ug/kg	0.52	0.11	1
Bromoform ND ug/kg 4.2 0.26 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.52 0.17 1 Benzene ND ug/kg 0.52 0.17 1 Toluene ND ug/kg 1.0 0.56 1 Ethylbenzene ND ug/kg 1.0 0.15 1 Chloromethane ND ug/kg 4.2 0.97 1 Bromomethane ND ug/kg 2.1 0.60 1 Vinyl chloride ND ug/kg 1.0 0.35 1 Chloroethane ND ug/kg 2.1 0.47 1 1,1-Dichloroethene ND ug/kg 1.0 0.25 1 trans-1,2-Dichloroethene ND ug/kg 1.6 0.14 1 Trichloroethene ND ug/kg 0.52 0.14 1	trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.28	1
1,1,2,2-Tetrachloroethane ND ug/kg 0.52 0.17 1 Benzene ND ug/kg 0.52 0.17 1 Toluene ND ug/kg 1.0 0.56 1 Ethylbenzene ND ug/kg 1.0 0.15 1 Chloromethane ND ug/kg 4.2 0.97 1 Bromomethane ND ug/kg 2.1 0.60 1 Vinyl chloride ND ug/kg 1.0 0.35 1 Chloroethane ND ug/kg 2.1 0.47 1 1,1-Dichloroethene ND ug/kg 1.0 0.25 1 trans-1,2-Dichloroethene ND ug/kg 1.6 0.14 1 Trichloroethene ND ug/kg 0.52 0.14 1	cis-1,3-Dichloropropene	ND		ug/kg	0.52	0.16	1
Benzene ND ug/kg 0.52 0.17 1 Toluene ND ug/kg 1.0 0.56 1 Ethylbenzene ND ug/kg 1.0 0.15 1 Chloromethane ND ug/kg 4.2 0.97 1 Bromomethane ND ug/kg 2.1 0.60 1 Vinyl chloride ND ug/kg 1.0 0.35 1 Chloroethane ND ug/kg 2.1 0.47 1 1,1-Dichloroethene ND ug/kg 1.0 0.25 1 trans-1,2-Dichloroethene ND ug/kg 1.6 0.14 1 Trichloroethene ND ug/kg 0.52 0.14 1	Bromoform	ND		ug/kg	4.2	0.26	1
Toluene ND ug/kg 1.0 0.56 1 Ethylbenzene ND ug/kg 1.0 0.15 1 Chloromethane ND ug/kg 4.2 0.97 1 Bromomethane ND ug/kg 2.1 0.60 1 Vinyl chloride ND ug/kg 1.0 0.35 1 Chloroethane ND ug/kg 2.1 0.47 1 1,1-Dichloroethene ND ug/kg 1.0 0.25 1 trans-1,2-Dichloroethene ND ug/kg 1.6 0.14 1 Trichloroethene ND ug/kg 0.52 0.14 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	0.52	0.17	1
Ethylbenzene ND ug/kg 1.0 0.15 1 Chloromethane ND ug/kg 4.2 0.97 1 Bromomethane ND ug/kg 2.1 0.60 1 Vinyl chloride ND ug/kg 1.0 0.35 1 Chloroethane ND ug/kg 2.1 0.47 1 1,1-Dichloroethene ND ug/kg 1.0 0.25 1 trans-1,2-Dichloroethene ND ug/kg 1.6 0.14 1 Trichloroethene ND ug/kg 0.52 0.14 1	Benzene	ND		ug/kg	0.52	0.17	1
Chloromethane ND ug/kg 4.2 0.97 1 Bromomethane ND ug/kg 2.1 0.60 1 Vinyl chloride ND ug/kg 1.0 0.35 1 Chloroethane ND ug/kg 2.1 0.47 1 1,1-Dichloroethene ND ug/kg 1.0 0.25 1 trans-1,2-Dichloroethene ND ug/kg 1.6 0.14 1 Trichloroethene ND ug/kg 0.52 0.14 1	Toluene	ND		ug/kg	1.0	0.56	1
Bromomethane ND ug/kg 2.1 0.60 1 Vinyl chloride ND ug/kg 1.0 0.35 1 Chloroethane ND ug/kg 2.1 0.47 1 1,1-Dichloroethene ND ug/kg 1.0 0.25 1 trans-1,2-Dichloroethene ND ug/kg 1.6 0.14 1 Trichloroethene ND ug/kg 0.52 0.14 1	Ethylbenzene	ND		ug/kg	1.0	0.15	1
Vinyl chloride ND ug/kg 1.0 0.35 1 Chloroethane ND ug/kg 2.1 0.47 1 1,1-Dichloroethene ND ug/kg 1.0 0.25 1 trans-1,2-Dichloroethene ND ug/kg 1.6 0.14 1 Trichloroethene ND ug/kg 0.52 0.14 1	Chloromethane	ND		ug/kg	4.2	0.97	1
Chloroethane ND ug/kg 2.1 0.47 1 1,1-Dichloroethene ND ug/kg 1.0 0.25 1 trans-1,2-Dichloroethene ND ug/kg 1.6 0.14 1 Trichloroethene ND ug/kg 0.52 0.14 1	Bromomethane	ND		ug/kg	2.1	0.60	1
1,1-Dichloroethene ND ug/kg 1.0 0.25 1 trans-1,2-Dichloroethene ND ug/kg 1.6 0.14 1 Trichloroethene ND ug/kg 0.52 0.14 1	Vinyl chloride	ND		ug/kg	1.0	0.35	1
trans-1,2-Dichloroethene ND ug/kg 1.6 0.14 1 Trichloroethene ND ug/kg 0.52 0.14 1	Chloroethane	ND		ug/kg	2.1	0.47	1
Trichloroethene ND ug/kg 0.52 0.14 1	1,1-Dichloroethene	ND		ug/kg	1.0	0.25	1
· ·	trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.14	1
1,2-Dichlorobenzene ND ug/kg 2.1 0.15 1	Trichloroethene	ND		ug/kg	0.52	0.14	1
	1,2-Dichlorobenzene	ND		ug/kg	2.1	0.15	1

Project Name: 52-54 CANAL ST, LYONS **Lab Number:** L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-01 Date Collected: 12/27/24 14:00

Client ID: EB-01 Date Received: 12/27/24

Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by EPA 5035 Low - Westborough Lab								
1,3-Dichlorobenzene	ND		ug/kg	2.1	0.15	1		
1,4-Dichlorobenzene	ND		ug/kg	2.1	0.18	1		
Methyl tert butyl ether	ND		ug/kg	2.1	0.21	1		
p/m-Xylene	ND		ug/kg	2.1	0.58	1		
o-Xylene	ND		ug/kg	1.0	0.30	1		
Xylenes, Total	ND		ug/kg	1.0	0.30	1		
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	1		
Styrene	ND		ug/kg	1.0	0.20	1		
Dichlorodifluoromethane	ND		ug/kg	10	0.95	1		
Acetone	9.9	J	ug/kg	10	5.0	1		
Carbon disulfide	ND		ug/kg	10	4.7	1		
2-Butanone	ND		ug/kg	10	2.3	1		
4-Methyl-2-pentanone	ND		ug/kg	10	1.3	1		
2-Hexanone	ND		ug/kg	10	1.2	1		
Bromochloromethane	ND		ug/kg	2.1	0.21	1		
1,2-Dibromoethane	ND		ug/kg	1.0	0.29	1		
n-Butylbenzene	ND		ug/kg	1.0	0.17	1		
sec-Butylbenzene	ND		ug/kg	1.0	0.15	1		
tert-Butylbenzene	ND		ug/kg	2.1	0.12	1		
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.1	1.0	1		
Isopropylbenzene	ND		ug/kg	1.0	0.11	1		
p-Isopropyltoluene	ND		ug/kg	1.0	0.11	1		
n-Propylbenzene	ND		ug/kg	1.0	0.18	1		
1,2,3-Trichlorobenzene	ND		ug/kg	2.1	0.33	1		
1,2,4-Trichlorobenzene	ND		ug/kg	2.1	0.28	1		
1,3,5-Trimethylbenzene	ND		ug/kg	2.1	0.20	1		
1,2,4-Trimethylbenzene	ND		ug/kg	2.1	0.35	1		
Methyl Acetate	ND		ug/kg	4.2	0.99	1		
Cyclohexane	ND		ug/kg	10	0.56	1		
Freon-113	ND		ug/kg	4.2	0.72	1		
Methyl cyclohexane	ND		ug/kg	4.2	0.63	1		

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-01 Date Collected: 12/27/24 14:00

Client ID: EB-01 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by EPA 5035 Low - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	103	70-130	

L2476274

01/24/25

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

SAMPLE RESULTS

Date Collected: 12/27/24 14:15

Lab Number:

Report Date:

Lab ID: L2476274-02

Date Received: 12/27/24 Client ID: ESW-01 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260D Analytical Date: 01/03/25 16:08

Analyst: LAC 82% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low -	Westborough Lab					
Methylene chloride	ND		ug/kg	4.9	2.2	1
1,1-Dichloroethane	ND		ug/kg	0.99	0.14	1
Chloroform	ND		ug/kg	1.5	0.14	1
Carbon tetrachloride	ND		ug/kg	0.99	0.23	1
1,2-Dichloropropane	ND		ug/kg	0.99	0.12	1
Dibromochloromethane	ND		ug/kg	0.99	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	0.99	0.26	1
Tetrachloroethene	ND		ug/kg	0.49	0.19	1
Chlorobenzene	ND		ug/kg	0.49	0.12	1
Trichlorofluoromethane	ND		ug/kg	3.9	0.68	1
1,2-Dichloroethane	ND		ug/kg	0.99	0.25	1
1,1,1-Trichloroethane	ND		ug/kg	0.49	0.16	1
Bromodichloromethane	ND		ug/kg	0.49	0.11	1
trans-1,3-Dichloropropene	ND		ug/kg	0.99	0.27	1
cis-1,3-Dichloropropene	ND		ug/kg	0.49	0.16	1
Bromoform	ND		ug/kg	3.9	0.24	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.49	0.16	1
Benzene	ND		ug/kg	0.49	0.16	1
Toluene	ND		ug/kg	0.99	0.54	1
Ethylbenzene	ND		ug/kg	0.99	0.14	1
Chloromethane	ND		ug/kg	3.9	0.92	1
Bromomethane	ND		ug/kg	2.0	0.57	1
Vinyl chloride	ND		ug/kg	0.99	0.33	1
Chloroethane	ND		ug/kg	2.0	0.44	1
1,1-Dichloroethene	ND		ug/kg	0.99	0.23	1
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	1
Trichloroethene	ND		ug/kg	0.49	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14	1

Project Name: 52-54 CANAL ST, LYONS **Lab Number:** L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-02 Date Collected: 12/27/24 14:15

Client ID: ESW-01 Date Received: 12/27/24

Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by EPA 5035 Low - Westborough Lab								
1,3-Dichlorobenzene	ND		ug/kg	2.0	0.14	1		
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17	1		
Methyl tert butyl ether	ND		ug/kg	2.0	0.20	1		
p/m-Xylene	ND		ug/kg	2.0	0.55	1		
o-Xylene	ND		ug/kg	0.99	0.29	1		
Xylenes, Total	ND		ug/kg	0.99	0.29	1		
cis-1,2-Dichloroethene	ND		ug/kg	0.99	0.17	1		
Styrene	ND		ug/kg	0.99	0.19	1		
Dichlorodifluoromethane	ND		ug/kg	9.9	0.90	1		
Acetone	ND		ug/kg	9.9	4.7	1		
Carbon disulfide	ND		ug/kg	9.9	4.5	1		
2-Butanone	ND		ug/kg	9.9	2.2	1		
4-Methyl-2-pentanone	ND		ug/kg	9.9	1.3	1		
2-Hexanone	ND		ug/kg	9.9	1.2	1		
Bromochloromethane	ND		ug/kg	2.0	0.20	1		
1,2-Dibromoethane	ND		ug/kg	0.99	0.28	1		
n-Butylbenzene	ND		ug/kg	0.99	0.16	1		
sec-Butylbenzene	ND		ug/kg	0.99	0.14	1		
tert-Butylbenzene	ND		ug/kg	2.0	0.12	1		
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	0.98	1		
Isopropylbenzene	ND		ug/kg	0.99	0.11	1		
p-Isopropyltoluene	ND		ug/kg	0.99	0.11	1		
n-Propylbenzene	ND		ug/kg	0.99	0.17	1		
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.32	1		
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27	1		
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19	1		
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33	1		
Methyl Acetate	ND		ug/kg	3.9	0.94	1		
Cyclohexane	ND		ug/kg	9.9	0.54	1		
Freon-113	ND		ug/kg	3.9	0.68	1		
Methyl cyclohexane	ND		ug/kg	3.9	0.59	1		

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-02 Date Collected: 12/27/24 14:15

Client ID: ESW-01 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by EPA 5035 Low - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	98	70-130
Dibromofluoromethane	110	70-130

L2476274

01/24/25

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2476274-03 Date Collected: 12/27/24 14:30

Date Received: 12/27/24 Client ID: ESW-02 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260D Analytical Date: 01/03/25 16:34

Analyst: LAC 91% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
Methylene chloride	ND		ug/kg	5.3	2.4	1	
1,1-Dichloroethane	ND		ug/kg	1.0	0.15	1	
Chloroform	ND		ug/kg	1.6	0.15	1	
Carbon tetrachloride	ND		ug/kg	1.0	0.24	1	
1,2-Dichloropropane	ND		ug/kg	1.0	0.13	1	
Dibromochloromethane	ND		ug/kg	1.0	0.15	1	
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.28	1	
Tetrachloroethene	ND		ug/kg	0.53	0.21	1	
Chlorobenzene	ND		ug/kg	0.53	0.13	1	
Trichlorofluoromethane	ND		ug/kg	4.2	0.74	1	
1,2-Dichloroethane	ND		ug/kg	1.0	0.27	1	
1,1,1-Trichloroethane	ND		ug/kg	0.53	0.18	1	
Bromodichloromethane	ND		ug/kg	0.53	0.12	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.29	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.53	0.17	1	
Bromoform	ND		ug/kg	4.2	0.26	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.53	0.18	1	
Benzene	ND		ug/kg	0.53	0.18	1	
Toluene	ND		ug/kg	1.0	0.57	1	
Ethylbenzene	ND		ug/kg	1.0	0.15	1	
Chloromethane	ND		ug/kg	4.2	0.99	1	
Bromomethane	ND		ug/kg	2.1	0.62	1	
Vinyl chloride	ND		ug/kg	1.0	0.35	1	
Chloroethane	ND		ug/kg	2.1	0.48	1	
1,1-Dichloroethene	ND		ug/kg	1.0	0.25	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.14	1	
Trichloroethene	ND		ug/kg	0.53	0.14	1	
1,2-Dichlorobenzene	ND		ug/kg	2.1	0.15	1	

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-03 Date Collected: 12/27/24 14:30

Client ID: ESW-02 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

,

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low	- Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	2.1	0.16	1
1,4-Dichlorobenzene	ND		ug/kg	2.1	0.18	1
Methyl tert butyl ether	ND		ug/kg	2.1	0.21	1
p/m-Xylene	ND		ug/kg	2.1	0.59	1
o-Xylene	ND		ug/kg	1.0	0.31	1
Xylenes, Total	ND		ug/kg	1.0	0.31	1
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	1
Styrene	ND		ug/kg	1.0	0.21	1
Dichlorodifluoromethane	ND		ug/kg	10	0.97	1
Acetone	ND		ug/kg	10	5.1	1
Carbon disulfide	ND		ug/kg	10	4.8	1
2-Butanone	ND		ug/kg	10	2.4	1
4-Methyl-2-pentanone	ND		ug/kg	10	1.4	1
2-Hexanone	ND		ug/kg	10	1.2	1
Bromochloromethane	ND		ug/kg	2.1	0.22	1
1,2-Dibromoethane	ND		ug/kg	1.0	0.30	1
n-Butylbenzene	ND		ug/kg	1.0	0.18	1
sec-Butylbenzene	ND		ug/kg	1.0	0.15	1
tert-Butylbenzene	ND		ug/kg	2.1	0.12	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.2	1.0	1
Isopropylbenzene	ND		ug/kg	1.0	0.12	1
p-Isopropyltoluene	ND		ug/kg	1.0	0.12	1
n-Propylbenzene	ND		ug/kg	1.0	0.18	1
1,2,3-Trichlorobenzene	ND		ug/kg	2.1	0.34	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.1	0.29	1
1,3,5-Trimethylbenzene	ND		ug/kg	2.1	0.20	1
1,2,4-Trimethylbenzene	ND		ug/kg	2.1	0.35	1
Methyl Acetate	ND		ug/kg	4.2	1.0	1
Cyclohexane	ND		ug/kg	10	0.58	1
Freon-113	ND		ug/kg	4.2	0.73	1
Methyl cyclohexane	ND		ug/kg	4.2	0.64	1

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-03 Date Collected: 12/27/24 14:30

Client ID: ESW-02 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by EPA 5035 Low - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	109	70-130	

Project Number: 037112 Report Date: 01/24/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/03/25 13:32

Analyst: LAC

arameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by EPA 5035 Lov	v - Westbord	ugh Lab fo	r sample(s):	02-03	Batch: WG2	016599-5
Methylene chloride	ND		ug/kg	5.0	2.3	
1,1-Dichloroethane	ND		ug/kg	1.0	0.14	
Chloroform	0.31	J	ug/kg	1.5	0.14	
Carbon tetrachloride	ND		ug/kg	1.0	0.23	
1,2-Dichloropropane	ND		ug/kg	1.0	0.12	
Dibromochloromethane	ND		ug/kg	1.0	0.14	
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.27	
Tetrachloroethene	ND		ug/kg	0.50	0.20	
Chlorobenzene	ND		ug/kg	0.50	0.13	
Trichlorofluoromethane	ND		ug/kg	4.0	0.70	
1,2-Dichloroethane	ND		ug/kg	1.0	0.26	
1,1,1-Trichloroethane	ND		ug/kg	0.50	0.17	
Bromodichloromethane	ND		ug/kg	0.50	0.11	
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.27	
cis-1,3-Dichloropropene	ND		ug/kg	0.50	0.16	
Bromoform	ND		ug/kg	4.0	0.25	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50	0.17	
Benzene	ND		ug/kg	0.50	0.17	
Toluene	ND		ug/kg	1.0	0.54	
Ethylbenzene	ND		ug/kg	1.0	0.14	
Chloromethane	ND		ug/kg	4.0	0.93	
Bromomethane	ND		ug/kg	2.0	0.58	
Vinyl chloride	ND		ug/kg	1.0	0.34	
Chloroethane	ND		ug/kg	2.0	0.45	
1,1-Dichloroethene	ND		ug/kg	1.0	0.24	
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	
Trichloroethene	ND		ug/kg	0.50	0.14	
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14	
1,3-Dichlorobenzene	ND		ug/kg	2.0	0.15	

Project Number: 037112 Report Date: 01/24/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/03/25 13:32

Analyst: LAC

arameter	Result	Qualifier	Units	RL	М	DL
olatile Organics by EPA 5035 Lov	v - Westbord	ugh Lab fo	r sample(s):	02-03	Batch:	WG2016599-5
1,4-Dichlorobenzene	ND		ug/kg	2.0	0	.17
Methyl tert butyl ether	ND		ug/kg	2.0	0	.20
p/m-Xylene	ND		ug/kg	2.0	0	.56
o-Xylene	ND		ug/kg	1.0	0	.29
Xylenes, Total	ND		ug/kg	1.0	0	.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0	.18
Styrene	ND		ug/kg	1.0	0	.20
Dichlorodifluoromethane	ND		ug/kg	10	0	.92
Acetone	ND		ug/kg	10	4	1.8
Carbon disulfide	ND		ug/kg	10	4	1.6
2-Butanone	ND		ug/kg	10		2.2
4-Methyl-2-pentanone	ND		ug/kg	10		1.3
2-Hexanone	ND		ug/kg	10		1.2
Bromochloromethane	ND		ug/kg	2.0	0	.20
1,2-Dibromoethane	ND		ug/kg	1.0	0	.28
n-Butylbenzene	ND		ug/kg	1.0	0	.17
sec-Butylbenzene	ND		ug/kg	1.0	0	.15
tert-Butylbenzene	ND		ug/kg	2.0	0	.12
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0
Isopropylbenzene	ND		ug/kg	1.0	0	.11
p-Isopropyltoluene	ND		ug/kg	1.0	0	.11
n-Propylbenzene	ND		ug/kg	1.0	0	.17
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0	.32
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0	.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0	.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0	.33
Methyl Acetate	ND		ug/kg	4.0	0	.95
Cyclohexane	ND		ug/kg	10	0	.54
Freon-113	ND		ug/kg	4.0	0	.69

Project Number: 037112 Report Date: 01/24/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/03/25 13:32

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 Low	- Westbord	ough Lab fo	r sample(s):	02-03	Batch: WG2016599-5
Methyl cyclohexane	ND		ug/kg	4.0	0.60

		Acceptance
Surrogate	%Recovery Qual	lifier Criteria
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	94	70-130
Dibromofluoromethane	104	70-130

Project Number: 037112 Report Date: 01/24/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/06/25 10:05

Analyst: AJK

arameter	Result	Qualifier Ur	nits	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lal	o for sample(s): 01	Batch:	WG2016945-5
Methylene chloride	ND	u	g/kg	5.0	2.3
1,1-Dichloroethane	ND	u	g/kg	1.0	0.14
Chloroform	ND	u	g/kg	1.5	0.14
Carbon tetrachloride	ND	u	g/kg	1.0	0.23
1,2-Dichloropropane	ND	u	g/kg	1.0	0.12
Dibromochloromethane	ND	u	g/kg	1.0	0.14
1,1,2-Trichloroethane	ND	u	g/kg	1.0	0.27
Tetrachloroethene	ND	u	g/kg	0.50	0.20
Chlorobenzene	ND	u	g/kg	0.50	0.13
Trichlorofluoromethane	ND	u	g/kg	4.0	0.70
1,2-Dichloroethane	ND	u	g/kg	1.0	0.26
1,1,1-Trichloroethane	ND	u	g/kg	0.50	0.17
Bromodichloromethane	ND	u	g/kg	0.50	0.11
trans-1,3-Dichloropropene	ND	u	g/kg	1.0	0.27
cis-1,3-Dichloropropene	ND	u	g/kg	0.50	0.16
Bromoform	ND	u	g/kg	4.0	0.25
1,1,2,2-Tetrachloroethane	ND	u	g/kg	0.50	0.17
Benzene	ND	u	g/kg	0.50	0.17
Toluene	ND	u	g/kg	1.0	0.54
Ethylbenzene	ND	u	g/kg	1.0	0.14
Chloromethane	ND	u	g/kg	4.0	0.93
Bromomethane	ND	u	g/kg	2.0	0.58
Vinyl chloride	ND	u	g/kg	1.0	0.34
Chloroethane	ND	u	g/kg	2.0	0.45
1,1-Dichloroethene	ND	u	g/kg	1.0	0.24
trans-1,2-Dichloroethene	ND	u	g/kg	1.5	0.14
Trichloroethene	ND	u	g/kg	0.50	0.14
1,2-Dichlorobenzene	ND	u	g/kg	2.0	0.14
1,3-Dichlorobenzene	ND	u	g/kg	2.0	0.15

Project Number: 037112 Report Date: 01/24/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/06/25 10:05

Analyst: AJK

Parameter	Result	Qualifier	Units	:	RL	MDL
olatile Organics by GC/MS - Wes	stborough Lab	for sampl	e(s):	01	Batch:	WG2016945-5
1,4-Dichlorobenzene	ND		ug/k	g	2.0	0.17
Methyl tert butyl ether	ND		ug/k	9	2.0	0.20
p/m-Xylene	ND		ug/k	9	2.0	0.56
o-Xylene	ND		ug/k	9	1.0	0.29
Xylenes, Total	ND		ug/k	9	1.0	0.29
cis-1,2-Dichloroethene	ND		ug/k	9	1.0	0.18
Styrene	ND		ug/k	9	1.0	0.20
Dichlorodifluoromethane	ND		ug/k	9	10	0.92
Acetone	ND		ug/k	9	10	4.8
Carbon disulfide	ND		ug/k	9	10	4.6
2-Butanone	ND		ug/k	9	10	2.2
4-Methyl-2-pentanone	ND		ug/k	9	10	1.3
2-Hexanone	ND		ug/k	9	10	1.2
Bromochloromethane	ND		ug/k	9	2.0	0.20
1,2-Dibromoethane	ND		ug/k	9	1.0	0.28
n-Butylbenzene	ND		ug/k	9	1.0	0.17
sec-Butylbenzene	ND		ug/k	9	1.0	0.15
tert-Butylbenzene	ND		ug/k	9	2.0	0.12
1,2-Dibromo-3-chloropropane	ND		ug/k	9	3.0	1.0
Isopropylbenzene	ND		ug/k	9	1.0	0.11
p-Isopropyltoluene	ND		ug/k	9	1.0	0.11
n-Propylbenzene	ND		ug/k	9	1.0	0.17
1,2,3-Trichlorobenzene	ND		ug/k	9	2.0	0.32
1,2,4-Trichlorobenzene	ND		ug/k	9	2.0	0.27
1,3,5-Trimethylbenzene	ND		ug/k	9	2.0	0.19
1,2,4-Trimethylbenzene	ND		ug/k	9	2.0	0.33
Methyl Acetate	ND		ug/k	9	4.0	0.95
Cyclohexane	ND		ug/k	9	10	0.54
Freon-113	ND		ug/k	9	4.0	0.69

Project Number: 037112 Report Date: 01/24/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/06/25 10:05

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes	tborough Lab	for sample	e(s): 01	Batch:	WG2016945-5	
Methyl cyclohexane	ND		ug/kg	4.0	0.60	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	93	70-130
4-Bromofluorobenzene	99	70-130
Dibromofluoromethane	99	70-130

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number: L2476274

Parameter	LCS %Recovery	LCSD Qual %Recove		%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 Low - Wes	tborough Lab	Associated sample(s):	02-03 Batch:	WG2016599-3	WG2016599-4	4
Methylene chloride	82	80		70-130	2	30
1,1-Dichloroethane	90	84		70-130	7	30
Chloroform	87	83		70-130	5	30
Carbon tetrachloride	94	82		70-130	14	30
1,2-Dichloropropane	90	87		70-130	3	30
Dibromochloromethane	97	98		70-130	1	30
1,1,2-Trichloroethane	89	90		70-130	1	30
Tetrachloroethene	89	80		70-130	11	30
Chlorobenzene	89	84		70-130	6	30
Trichlorofluoromethane	95	83		70-139	13	30
1,2-Dichloroethane	88	88		70-130	0	30
1,1,1-Trichloroethane	89	80		70-130	11	30
Bromodichloromethane	87	86		70-130	1	30
trans-1,3-Dichloropropene	89	89		70-130	0	30
cis-1,3-Dichloropropene	91	90		70-130	1	30
Bromoform	95	98		70-130	3	30
1,1,2,2-Tetrachloroethane	89	93		70-130	4	30
Benzene	84	79		70-130	6	30
Toluene	84	77		70-130	9	30
Ethylbenzene	83	77		70-130	8	30
Chloromethane	109	97		52-130	12	30
Bromomethane	114	100		57-147	13	30
Vinyl chloride	89	78		67-130	13	30

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number: L2476274

Parameter	LCS %Recovery	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 Low - We	estborough Lab	Associated sample(s): 02-0	03 Batch:	WG2016599-3	WG2016599-	-4
Chloroethane	90	80		50-151	12	30
1,1-Dichloroethene	90	79		65-135	13	30
trans-1,2-Dichloroethene	91	82		70-130	10	30
Trichloroethene	90	82		70-130	9	30
1,2-Dichlorobenzene	93	89		70-130	4	30
1,3-Dichlorobenzene	93	86		70-130	8	30
1,4-Dichlorobenzene	91	86		70-130	6	30
Methyl tert butyl ether	100	103		66-130	3	30
p/m-Xylene	87	81		70-130	7	30
o-Xylene	87	82		70-130	6	30
cis-1,2-Dichloroethene	90	85		70-130	6	30
Styrene	88	84		70-130	5	30
Dichlorodifluoromethane	98	83		30-146	17	30
Acetone	135	154	Q	54-140	13	30
Carbon disulfide	90	80		59-130	12	30
2-Butanone	106	119		70-130	12	30
4-Methyl-2-pentanone	94	101		70-130	7	30
2-Hexanone	91	101		70-130	10	30
Bromochloromethane	100	97		70-130	3	30
1,2-Dibromoethane	96	99		70-130	3	30
n-Butylbenzene	91	79		70-130	14	30
sec-Butylbenzene	90	80		70-130	12	30
tert-Butylbenzene	92	82		70-130	11	30

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number: L2476274

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by EPA 5035 Low -	Westborough Lab	Associated s	sample(s): 02-0	3 Batch:	WG2016599-3	WG2016599-	4		
1,2-Dibromo-3-chloropropane	88		91		68-130	3		30	
Isopropylbenzene	91		81		70-130	12		30	
p-Isopropyltoluene	94		84		70-130	11		30	
n-Propylbenzene	87		79		70-130	10		30	
1,2,3-Trichlorobenzene	91		92		70-130	1		30	
1,2,4-Trichlorobenzene	91		88		70-130	3		30	
1,3,5-Trimethylbenzene	87		80		70-130	8		30	
1,2,4-Trimethylbenzene	88		81		70-130	8		30	
Methyl Acetate	110		121		51-146	10		30	
Cyclohexane	102		90		59-142	13		30	
Freon-113	99		86		50-139	14		30	
Methyl cyclohexane	93		81		70-130	14		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	95	99	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	99	98	70-130
Dibromofluoromethane	106	104	70-130

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number: L2476274

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westboroug	h Lab Associa	ated sample(s	: 01 Batch:	WG2016945-3 WG20169-	45-4	
Methylene chloride	103		98	70-130	5	30
1,1-Dichloroethane	118		113	70-130	4	30
Chloroform	115		112	70-130	3	30
Carbon tetrachloride	119		115	70-130	3	30
1,2-Dichloropropane	113		111	70-130	2	30
Dibromochloromethane	105		102	70-130	3	30
1,1,2-Trichloroethane	102		99	70-130	3	30
Tetrachloroethene	111		109	70-130	2	30
Chlorobenzene	104		102	70-130	2	30
Trichlorofluoromethane	132		122	70-139	8	30
1,2-Dichloroethane	110		108	70-130	2	30
1,1,1-Trichloroethane	121		117	70-130	3	30
Bromodichloromethane	114		111	70-130	3	30
trans-1,3-Dichloropropene	106		102	70-130	4	30
cis-1,3-Dichloropropene	117		114	70-130	3	30
Bromoform	100		97	70-130	3	30
1,1,2,2-Tetrachloroethane	97		93	70-130	4	30
Benzene	117		115	70-130	2	30
Toluene	103		101	70-130	2	30
Ethylbenzene	106		103	70-130	3	30
Chloromethane	119		108	52-130	10	30
Bromomethane	120		114	57-147	5	30
Vinyl chloride	120		113	67-130	6	30

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number: L2476274

Parameter	LCS %Recovery 0	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborou	ugh Lab Associated	sample(s): 01 Batch:	WG2016945-3 WG201694	5-4	
Chloroethane	114	111	50-151	3	30
1,1-Dichloroethene	122	115	65-135	6	30
trans-1,2-Dichloroethene	116	114	70-130	2	30
Trichloroethene	120	116	70-130	3	30
1,2-Dichlorobenzene	101	98	70-130	3	30
1,3-Dichlorobenzene	103	101	70-130	2	30
1,4-Dichlorobenzene	102	100	70-130	2	30
Methyl tert butyl ether	111	106	66-130	5	30
p/m-Xylene	108	106	70-130	2	30
o-Xylene	107	106	70-130	1	30
cis-1,2-Dichloroethene	113	111	70-130	2	30
Styrene	108	106	70-130	2	30
Dichlorodifluoromethane	117	110	30-146	6	30
Acetone	120	111	54-140	8	30
Carbon disulfide	118	112	59-130	5	30
2-Butanone	113	104	70-130	8	30
4-Methyl-2-pentanone	103	98	70-130	5	30
2-Hexanone	104	97	70-130	7	30
Bromochloromethane	112	109	70-130	3	30
1,2-Dibromoethane	104	101	70-130	3	30
n-Butylbenzene	110	107	70-130	3	30
sec-Butylbenzene	108	106	70-130	2	30
tert-Butylbenzene	105	103	70-130	2	30
			-		_

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number: L2476274

arameter	LCS %Recovery	Qual 9	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS -	Westborough Lab Associa	ted sample(s):	01 Batch:	WG201694	45-3 WG20169 ²	5-4		
1,2-Dibromo-3-chloropropane	97		94		68-130	3		30
Isopropylbenzene	106		103		70-130	3		30
p-Isopropyltoluene	109		107		70-130	2		30
n-Propylbenzene	108		106		70-130	2		30
1,2,3-Trichlorobenzene	102		99		70-130	3		30
1,2,4-Trichlorobenzene	105		102		70-130	3		30
1,3,5-Trimethylbenzene	106		105		70-130	1		30
1,2,4-Trimethylbenzene	106		103		70-130	3		30
Methyl Acetate	104		97		51-146	7		30
Cyclohexane	123		120		59-142	2		30
Freon-113	123		118		50-139	4		30
Methyl cyclohexane	124		122		70-130	2		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	98	96	70-130
Toluene-d8	95	95	70-130
4-Bromofluorobenzene	100	99	70-130
Dibromofluoromethane	100	97	70-130

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number: L2476274

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	' Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPL Qual Limi	
Volatile Organics by GC/MS ID: EB-01	- Westborou	ıgh Lab 🛚 /	Associated san	nple(s): 01 (QC Batch	ID: WG20	16945-6 WG	201694	5-7 QC S	ample:	L2476274-01	Client
Methylene chloride	ND	107	72	67	Q	74	70		70-130	2	30	
1,1-Dichloroethane	ND	107	85	79		86	81		70-130	1	30	
Chloroform	ND	107	75	70		76	72		70-130	1	30	
Carbon tetrachloride	ND	107	68	64	Q	69	65	Q	70-130	1	30	
1,2-Dichloropropane	ND	107	74	69	Q	76	72		70-130	3	30	
Dibromochloromethane	ND	107	61	57	Q	63	59	Q	70-130	2	30	
1,1,2-Trichloroethane	ND	107	66	61	Q	67	64	Q	70-130	2	30	
Tetrachloroethene	ND	107	34	32	Q	33	31	Q	70-130	4	30	
Chlorobenzene	ND	107	37	34	Q	37	35	Q	70-130	1	30	
Trichlorofluoromethane	ND	107	94	88		92	87		70-139	2	30	
1,2-Dichloroethane	ND	107	76	71		76	72		70-130	1	30	
1,1,1-Trichloroethane	ND	107	79	73		80	75		70-130	2	30	
Bromodichloromethane	ND	107	71	66	Q	72	68	Q	70-130	1	30	
trans-1,3-Dichloropropene	ND	107	53	50	Q	53	50	Q	70-130	1	30	
cis-1,3-Dichloropropene	ND	107	63	59	Q	62	59	Q	70-130	2	30	
Bromoform	ND	107	54	51	Q	58	55	Q	70-130	7	30	
1,1,2,2-Tetrachloroethane	ND	107	52	49	Q	50	48	Q	70-130	4	30	
Benzene	ND	107	73	68	Q	74	70		70-130	0	30	
Toluene	ND	107	47	44	Q	47	44	Q	70-130	0	30	
Ethylbenzene	ND	107	33	30	Q	32	31	Q	70-130	1	30	
Chloromethane	ND	107	98	91		100	96		52-130	4	30	
Bromomethane	ND	107	94	88		96	91		57-147	2	30	
Vinyl chloride	ND	107	100	93		100	96		67-130	1	30	

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number:

L2476274

Report Date:

01/24/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits	;
Volatile Organics by GC/MS ID: EB-01	- Westborou	ıgh Lab <i>A</i>	Associated san	nple(s): 01	QC Batch	ID: WG20	16945-6 WG	201694	5-7 QC Sa	ample:	L2476274-01	Client
Chloroethane	ND	107	98	91		98	92		50-151	0	30	
1,1-Dichloroethene	ND	107	87	81		86	81		65-135	1	30	
trans-1,2-Dichloroethene	ND	107	70	65	Q	71	67	Q	70-130	1	30	
Trichloroethene	ND	107	58	54	Q	63	59	Q	70-130	8	30	
1,2-Dichlorobenzene	ND	107	19	18	Q	21	20	Q	70-130	9	30	
1,3-Dichlorobenzene	ND	107	18	17	Q	19	18	Q	70-130	5	30	
1,4-Dichlorobenzene	ND	107	18	17	Q	19	18	Q	70-130	5	30	
Methyl tert butyl ether	ND	107	87	81		89	84		66-130	2	30	
p/m-Xylene	ND	215	63	29	Q	63	30	Q	70-130	0	30	
o-Xylene	ND	215	66	31	Q	68	32	Q	70-130	4	30	
cis-1,2-Dichloroethene	ND	107	70	65	Q	71	67	Q	70-130	1	30	
Styrene	ND	215	65	30	Q	68	32	Q	70-130	4	30	
Dichlorodifluoromethane	ND	107	100	97		110	101		30-146	3	30	
Acetone	9.9J	107	97	91		99	94		54-140	2	30	
Carbon disulfide	ND	107	65	60		67	63		59-130	3	30	
2-Butanone	ND	107	87	81		90	85		70-130	2	30	
4-Methyl-2-pentanone	ND	107	79	73		81	77		70-130	3	30	
2-Hexanone	ND	107	69	64	Q	72	68	Q	70-130	5	30	
Bromochloromethane	ND	107	76	71		76	72		70-130	0	30	
1,2-Dibromoethane	ND	107	62	58	Q	61	58	Q	70-130	1	30	
n-Butylbenzene	ND	107	9.8	9	Q	11	10	Q	70-130	10	30	
sec-Butylbenzene	ND	107	13	12	Q	14	13	Q	70-130	7	30	
tert-Butylbenzene	ND	107	16	15	Q	17	16	Q	70-130	6	30	

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number:

L2476274

Report Date:

01/24/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS ID: EB-01	- Westborou	igh Lab A	ssociated sam	ple(s): 01 (QC Batch	ID: WG20	16945-6 WG	201694	5-7 QC S	ample:	L24762	74-01	Client
1,2-Dibromo-3-chloropropane	ND	107	47	44	Q	53	50	Q	68-130	12		30	
Isopropylbenzene	ND	107	23	22	Q	24	22	Q	70-130	2		30	
p-Isopropyltoluene	ND	107	13	12	Q	14	13	Q	70-130	8		30	
n-Propylbenzene	ND	107	19	18	Q	19	18	Q	70-130	2		30	
1,2,3-Trichlorobenzene	ND	107	8.4	8	Q	10	10	Q	70-130	18		30	
1,2,4-Trichlorobenzene	ND	107	8.9	8	Q	10	10	Q	70-130	15		30	
1,3,5-Trimethylbenzene	ND	107	18	17	Q	19	18	Q	70-130	5		30	
1,2,4-Trimethylbenzene	ND	107	18	17	Q	19	18	Q	70-130	6		30	
Methyl Acetate	ND	107	99	92		110	100		51-146	7		30	
Cyclohexane	ND	107	49	46	Q	50	47	Q	59-142	1		30	
Freon-113	ND	107	74	69		75	70		50-139	0		30	
Methyl cyclohexane	ND	107	28	26	Q	30	28	Q	70-130	7		30	

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	102	100	70-130
4-Bromofluorobenzene	99	102	70-130
Dibromofluoromethane	101	99	70-130
Toluene-d8	94	95	70-130

SEMIVOLATILES

L2476274

01/24/25

12/31/24 09:02

Project Name: 52-54 CANAL ST, LYONS

EB-01

L2476274-01

52-54 CANAL ST. LYONS, NEW YORK

Project Number: 037112

SAMPLE RESULTS

Date Collected: 12/27/24 14:00

Data Callanta da 40/07/04 4 4-0/

Lab Number:

Report Date:

Extraction Date:

Date Received: 12/27/24

Extraction Method: EPA 3546

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8270E

Analytical Date: 01/04/25 11:41

Analyst: JG Percent Solids: 91%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbord	ough Lab					
Acenaphthene	ND		ug/kg	140	18.	1
Hexachlorobenzene	ND		ug/kg	110	20.	1
Bis(2-chloroethyl)ether	ND		ug/kg	160	24.	1
2-Chloronaphthalene	ND		ug/kg	180	18.	1
3,3'-Dichlorobenzidine	ND		ug/kg	180	48.	1
2,4-Dinitrotoluene	ND		ug/kg	180	36.	1
2,6-Dinitrotoluene	ND		ug/kg	180	31.	1
Fluoranthene	58	J	ug/kg	110	20.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	180	19.	1
4-Bromophenyl phenyl ether	ND		ug/kg	180	27.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	210	30.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	190	18.	1
Hexachlorobutadiene	ND		ug/kg	180	26.	1
Hexachlorocyclopentadiene	ND		ug/kg	510	160	1
Hexachloroethane	ND		ug/kg	140	29.	1
Isophorone	ND		ug/kg	160	23.	1
Naphthalene	ND		ug/kg	180	22.	1
Nitrobenzene	ND		ug/kg	160	26.	1
NDPA/DPA	ND		ug/kg	140	20.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	180	28.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	62.	1
Butyl benzyl phthalate	ND		ug/kg	180	45.	1
Di-n-butylphthalate	ND		ug/kg	180	34.	1
Di-n-octylphthalate	ND		ug/kg	180	61.	1
Diethyl phthalate	ND		ug/kg	180	16.	1
Dimethyl phthalate	ND		ug/kg	180	38.	1
Benzo(a)anthracene	39	J	ug/kg	110	20.	1
Benzo(a)pyrene	ND		ug/kg	140	44.	1

Project Name: 52-54 CANAL ST, LYONS **Lab Number:** L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-01 Date Collected: 12/27/24 14:00

Client ID: EB-01 Date Received: 12/27/24

Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
Benzo(b)fluoranthene	43	J	ug/kg	110	30.	1
Benzo(k)fluoranthene	ND		ug/kg	110	29.	1
Chrysene	35	J	ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	140	28.	1
Anthracene	ND		ug/kg	110	35.	1
Benzo(ghi)perylene	30	J	ug/kg	140	21.	1
Fluorene	ND		ug/kg	180	17.	1
Phenanthrene	34	J	ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	26	J	ug/kg	140	25.	1
Pyrene	52	J	ug/kg	110	18.	1
Biphenyl	ND		ug/kg	410	23.	1
Aniline	ND		ug/kg	210	84.	1
4-Chloroaniline	ND		ug/kg	180	32.	1
2-Nitroaniline	ND		ug/kg	180	34.	1
3-Nitroaniline	ND		ug/kg	180	34.	1
4-Nitroaniline	ND		ug/kg	180	74.	1
Dibenzofuran	ND		ug/kg	180	17.	1
2-Methylnaphthalene	ND		ug/kg	210	22.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	180	19.	1
Acetophenone	ND		ug/kg	180	22.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	34.	1
p-Chloro-m-cresol	ND		ug/kg	180	27.	1
2-Chlorophenol	ND		ug/kg	180	21.	1
2,4-Dichlorophenol	ND		ug/kg	160	29.	1
2,4-Dimethylphenol	ND		ug/kg	180	59.	1
2-Nitrophenol	ND		ug/kg	390	67.	1
4-Nitrophenol	ND		ug/kg	250	73.	1
2,4-Dinitrophenol	ND		ug/kg	860	83.	1
4,6-Dinitro-o-cresol	ND		ug/kg	460	86.	1
Pentachlorophenol	ND		ug/kg	140	39.	1
Phenol	ND		ug/kg	180	27.	1
2-Methylphenol	ND		ug/kg	180	28.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	260	28.	1
2,4,5-Trichlorophenol	ND		ug/kg	180	34.	1
Carbazole	ND		ug/kg	180	17.	1
Atrazine	ND		ug/kg	140	63.	1

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-01 Date Collected: 12/27/24 14:00

Client ID: EB-01 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Benzaldehyde	ND		ug/kg	240	48.	1	
Caprolactam	ND		ug/kg	180	54.	1	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	180	36.	1	
1,4-Dioxane	ND		ug/kg	27	8.2	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	67	25-120
Phenol-d6	66	10-120
Nitrobenzene-d5	64	23-120
2-Fluorobiphenyl	59	30-120
2,4,6-Tribromophenol	60	10-136
4-Terphenyl-d14	57	18-120

L2476274

01/24/25

Project Name: 52-54 CANAL ST, LYONS

01/04/25 11:16

Project Number: 037112

SAMPLE RESULTS

Date Collected: 12/27/24 14:15

Lab Number:

Report Date:

L2476274-02

Date Received: Client ID: ESW-01 12/27/24

52-54 CANAL ST. LYONS, NEW YORK Sample Location: Field Prep: Not Specified

Sample Depth:

Analytical Date:

Lab ID:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 12/31/24 09:02 Analytical Method: 1,8270E

Analyst: JG 82% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Acenaphthene	ND		ug/kg	160	21.	1
Hexachlorobenzene	ND		ug/kg	120	22.	1
Bis(2-chloroethyl)ether	ND		ug/kg	180	27.	1
2-Chloronaphthalene	ND		ug/kg	200	20.	1
3,3'-Dichlorobenzidine	ND		ug/kg	200	53.	1
2,4-Dinitrotoluene	ND		ug/kg	200	40.	1
2,6-Dinitrotoluene	ND		ug/kg	200	34.	1
Fluoranthene	ND		ug/kg	120	23.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	200	21.	1
4-Bromophenyl phenyl ether	ND		ug/kg	200	30.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	240	34.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	220	20.	1
Hexachlorobutadiene	ND		ug/kg	200	29.	1
Hexachlorocyclopentadiene	ND		ug/kg	570	180	1
Hexachloroethane	ND		ug/kg	160	32.	1
Isophorone	ND		ug/kg	180	26.	1
Naphthalene	ND		ug/kg	200	24.	1
Nitrobenzene	ND		ug/kg	180	30.	1
NDPA/DPA	ND		ug/kg	160	23.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	200	31.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	200	69.	1
Butyl benzyl phthalate	ND		ug/kg	200	50.	1
Di-n-butylphthalate	ND		ug/kg	200	38.	1
Di-n-octylphthalate	ND		ug/kg	200	68.	1
Diethyl phthalate	ND		ug/kg	200	18.	1
Dimethyl phthalate	ND		ug/kg	200	42.	1
Benzo(a)anthracene	ND		ug/kg	120	22.	1
Benzo(a)pyrene	ND		ug/kg	160	49.	1

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Report Date:

Project Number: 037112

SAMPLE RESULTS

Date Collected: 12/27/24 14:15

Lab ID: L2476274-02 Client ID: ESW-01

Date Received: 12/27/24 Field Prep:

Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Not Specified

01/24/25

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Benzo(b)fluoranthene	ND		ug/kg	120	34.	1
Benzo(k)fluoranthene	ND		ug/kg	120	32.	1
Chrysene	ND		ug/kg	120	21.	1
Acenaphthylene	ND		ug/kg	160	31.	1
Anthracene	ND		ug/kg	120	39.	1
Benzo(ghi)perylene	ND		ug/kg	160	24.	1
Fluorene	ND		ug/kg	200	19.	1
Phenanthrene	ND		ug/kg	120	24.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	23.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	28.	1
Pyrene	ND		ug/kg	120	20.	1
Biphenyl	ND		ug/kg	460	26.	1
Aniline	ND		ug/kg	240	94.	1
4-Chloroaniline	ND		ug/kg	200	36.	1
2-Nitroaniline	ND		ug/kg	200	38.	1
3-Nitroaniline	ND		ug/kg	200	38.	1
4-Nitroaniline	ND		ug/kg	200	83.	1
Dibenzofuran	ND		ug/kg	200	19.	1
2-Methylnaphthalene	ND		ug/kg	240	24.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	200	21.	1
Acetophenone	ND		ug/kg	200	25.	1
2,4,6-Trichlorophenol	ND		ug/kg	120	38.	1
p-Chloro-m-cresol	ND		ug/kg	200	30.	1
2-Chlorophenol	ND		ug/kg	200	24.	1
2,4-Dichlorophenol	ND		ug/kg	180	32.	1
2,4-Dimethylphenol	ND		ug/kg	200	66.	1
2-Nitrophenol	ND		ug/kg	430	75.	1
4-Nitrophenol	ND		ug/kg	280	82.	1
2,4-Dinitrophenol	ND		ug/kg	960	93.	1
4,6-Dinitro-o-cresol	ND		ug/kg	520	96.	1
Pentachlorophenol	ND		ug/kg	160	44.	1
Phenol	ND		ug/kg	200	30.	1
2-Methylphenol	ND		ug/kg	200	31.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	290	31.	1
2,4,5-Trichlorophenol	ND		ug/kg	200	38.	1
Carbazole	ND		ug/kg	200	19.	1
Atrazine	ND		ug/kg	160	70.	1

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-02 Date Collected: 12/27/24 14:15

Client ID: ESW-01 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Benzaldehyde	ND		ug/kg	260	54.	1
Caprolactam	ND		ug/kg	200	61.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	200	40.	1
1,4-Dioxane	ND		ug/kg	30	9.2	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	62	25-120
Phenol-d6	62	10-120
Nitrobenzene-d5	61	23-120
2-Fluorobiphenyl	59	30-120
2,4,6-Tribromophenol	59	10-136
4-Terphenyl-d14	54	18-120

L2476274

01/24/25

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number:

Report Date:

SAMPLE RESULTS

Lab ID: L2476274-03 Date Collected: 12/27/24 14:30

Date Received: Client ID: ESW-02 12/27/24 Sample Location: Field Prep: 52-54 CANAL ST. LYONS, NEW YORK Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 12/31/24 09:02 Analytical Method: 1,8270E Analytical Date: 01/03/25 02:26

Analyst: SMZ 91% Percent Solids:

	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
Acenaphthene	ND		ug/kg	140	18.	1
Hexachlorobenzene	ND		ug/kg	110	20.	1
Bis(2-chloroethyl)ether	ND		ug/kg	160	24.	1
2-Chloronaphthalene	ND		ug/kg	180	18.	1
3,3'-Dichlorobenzidine	ND		ug/kg	180	48.	1
2,4-Dinitrotoluene	ND		ug/kg	180	36.	1
2,6-Dinitrotoluene	ND		ug/kg	180	31.	1
Fluoranthene	ND		ug/kg	110	21.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	180	19.	1
4-Bromophenyl phenyl ether	ND		ug/kg	180	27.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	31.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	190	18.	1
Hexachlorobutadiene	ND		ug/kg	180	26.	1
Hexachlorocyclopentadiene	ND		ug/kg	510	160	1
Hexachloroethane	ND		ug/kg	140	29.	1
Isophorone	ND		ug/kg	160	23.	1
Naphthalene	ND		ug/kg	180	22.	1
Nitrobenzene	ND		ug/kg	160	26.	1
NDPA/DPA	ND		ug/kg	140	20.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	180	28.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	62.	1
Butyl benzyl phthalate	ND		ug/kg	180	45.	1
Di-n-butylphthalate	ND		ug/kg	180	34.	1
Di-n-octylphthalate	ND		ug/kg	180	61.	1
Diethyl phthalate	ND		ug/kg	180	17.	1
Dimethyl phthalate	ND		ug/kg	180	38.	1
Benzo(a)anthracene	ND		ug/kg	110	20.	1
Benzo(a)pyrene	ND		ug/kg	140	44.	1

L2476274

Project Name: 52-54 CANAL ST, LYONS Lab Number:

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

L2476274-03

Date Collected: 12/27/24 14:30

Client ID: ESW-02 Date Received: 12/27/24

Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	- Westborough Lab					
Benzo(b)fluoranthene	ND		//	110	30.	1
	ND ND		ug/kg	110	29.	1
Benzo(k)fluoranthene	ND ND		ug/kg			
Chrysene			ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	140	28.	1
Anthracene	ND		ug/kg	110	35.	<u> </u>
Benzo(ghi)perylene	ND		ug/kg	140	21.	1
Fluorene	ND		ug/kg	180	17.	1
Phenanthrene	ND		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	25.	1
Pyrene	ND		ug/kg	110	18.	1
Biphenyl	ND		ug/kg	410	23.	1
Aniline	ND		ug/kg	220	85.	1
4-Chloroaniline	ND		ug/kg	180	33.	1
2-Nitroaniline	ND		ug/kg	180	35.	1
3-Nitroaniline	ND		ug/kg	180	34.	1
4-Nitroaniline	ND		ug/kg	180	74.	1
Dibenzofuran	ND		ug/kg	180	17.	1
2-Methylnaphthalene	ND		ug/kg	220	22.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	180	19.	1
Acetophenone	ND		ug/kg	180	22.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	34.	1
p-Chloro-m-cresol	ND		ug/kg	180	27.	1
2-Chlorophenol	ND		ug/kg	180	21.	1
2,4-Dichlorophenol	ND		ug/kg	160	29.	1
2,4-Dimethylphenol	ND		ug/kg	180	59.	1
2-Nitrophenol	ND		ug/kg	390	67.	1
4-Nitrophenol	ND		ug/kg	250	73.	1
2,4-Dinitrophenol	ND		ug/kg	860	84.	1
4,6-Dinitro-o-cresol	ND		ug/kg	470	86.	1
Pentachlorophenol	ND		ug/kg	140	39.	1
Phenol	ND		ug/kg	180	27.	1
2-Methylphenol	ND		ug/kg	180	28.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	260	28.	1
2,4,5-Trichlorophenol	ND		ug/kg	180	34.	1
Carbazole	ND		ug/kg	180	17.	1
Atrazine	ND		ug/kg	140	63.	1

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-03 Date Collected: 12/27/24 14:30

Client ID: ESW-02 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Westborough Lab					
Benzaldehyde	ND		ug/kg	240	48.	1
Caprolactam	ND		ug/kg	180	54.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	180	36.	1
1,4-Dioxane	ND		ug/kg	27	8.2	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	34	25-120
Phenol-d6	36	10-120
Nitrobenzene-d5	27	23-120
2-Fluorobiphenyl	31	30-120
2,4,6-Tribromophenol	33	10-136
4-Terphenyl-d14	36	18-120

L2476274

12/31/24 09:02

Project Name: Lab Number: 52-54 CANAL ST, LYONS

Project Number: Report Date: 037112 01/24/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3546 Analytical Date: 01/02/25 08:00 Extraction Date:

Analyst: LJG

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-03	Batch:	WG2015218-1
Acenaphthene	ND		ug/kg	130		17.
Hexachlorobenzene	ND		ug/kg	99		18.
Bis(2-chloroethyl)ether	ND		ug/kg	150		22.
2-Chloronaphthalene	ND		ug/kg	160		16.
3,3'-Dichlorobenzidine	ND		ug/kg	160		44.
2,4-Dinitrotoluene	ND		ug/kg	160		33.
2,6-Dinitrotoluene	ND		ug/kg	160		28.
Fluoranthene	ND		ug/kg	99		19.
4-Chlorophenyl phenyl ether	ND		ug/kg	160		18.
4-Bromophenyl phenyl ether	ND		ug/kg	160		25.
Bis(2-chloroisopropyl)ether	ND		ug/kg	200		28.
Bis(2-chloroethoxy)methane	ND		ug/kg	180		16.
Hexachlorobutadiene	ND		ug/kg	160		24.
Hexachlorocyclopentadiene	ND		ug/kg	470		150
Hexachloroethane	ND		ug/kg	130		27.
Isophorone	ND		ug/kg	150		21.
Naphthalene	ND		ug/kg	160		20.
Nitrobenzene	ND		ug/kg	150		24.
NDPA/DPA	ND		ug/kg	130		19.
n-Nitrosodi-n-propylamine	ND		ug/kg	160		25.
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160		57.
Butyl benzyl phthalate	ND		ug/kg	160		41.
Di-n-butylphthalate	ND		ug/kg	160		31.
Di-n-octylphthalate	ND		ug/kg	160		56.
Diethyl phthalate	ND		ug/kg	160		15.
Dimethyl phthalate	ND		ug/kg	160		34.
Benzo(a)anthracene	ND		ug/kg	99		18.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	99		28.

Project Number: 037112 Report Date: 01/24/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 01/02/25 08:00

Analyst: LJG

Extraction Method: EPA 3546
Extraction Date: 12/31/24 09:02

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS - \	Nestborough	Lab for s	sample(s):	01-03	Batch:	WG2015218-1
Benzo(k)fluoranthene	ND		ug/kg	99		26.
Chrysene	ND		ug/kg	99		17.
Acenaphthylene	ND		ug/kg	130		25.
Anthracene	ND		ug/kg	99		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	99		20.
Dibenzo(a,h)anthracene	ND		ug/kg	99		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	99		16.
Biphenyl	ND		ug/kg	380		21.
Aniline	ND		ug/kg	200		78.
4-Chloroaniline	ND		ug/kg	160		30.
2-Nitroaniline	ND		ug/kg	160		32.
3-Nitroaniline	ND		ug/kg	160		31.
4-Nitroaniline	ND		ug/kg	160		68.
Dibenzofuran	ND		ug/kg	160		16.
2-Methylnaphthalene	ND		ug/kg	200		20.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160		17.
Acetophenone	ND		ug/kg	160		20.
2,4,6-Trichlorophenol	ND		ug/kg	99		31.
p-Chloro-m-cresol	ND		ug/kg	160		24.
2-Chlorophenol	ND		ug/kg	160		19.
2,4-Dichlorophenol	ND		ug/kg	150		26.
2,4-Dimethylphenol	ND		ug/kg	160		54.
2-Nitrophenol	ND		ug/kg	360		62.
4-Nitrophenol	ND		ug/kg	230		67.
2,4-Dinitrophenol	ND		ug/kg	790		77.
4,6-Dinitro-o-cresol	ND		ug/kg	430		79.

Project Number: 037112 Report Date: 01/24/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3546
Analytical Date: 01/02/25 08:00 Extraction Date: 12/31/24 09:02

Analyst: LJG

Semivolatile Organics by GC/MS - Westborough Lab for sample(s):01-03Batch:WG2015218-1PentachlorophenolNDug/kg13036.PhenolNDug/kg16025.	Parameter	Result	Qualifier	Units	RL		MDL	
3 3	Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01-03	Batch:	WG2015218-1	
Phenol ND ug/kg 160 25.	Pentachlorophenol	ND		ug/kg	130		36.	
	Phenol	ND		ug/kg	160		25.	
2-Methylphenol ND ug/kg 160 26.	2-Methylphenol	ND		ug/kg	160		26.	
3-Methylphenol/4-Methylphenol ND ug/kg 240 26.	3-Methylphenol/4-Methylphenol	ND		ug/kg	240		26.	
2,4,5-Trichlorophenol ND ug/kg 160 32.	2,4,5-Trichlorophenol	ND		ug/kg	160		32.	
Carbazole ND ug/kg 160 16.	Carbazole	ND		ug/kg	160		16.	
Atrazine ND ug/kg 130 58.	Atrazine	ND		ug/kg	130		58.	
Benzaldehyde ND ug/kg 220 44.	Benzaldehyde	ND		ug/kg	220		44.	
Caprolactam ND ug/kg 160 50.	Caprolactam	ND		ug/kg	160		50.	
2,3,4,6-Tetrachlorophenol ND ug/kg 160 33.	2,3,4,6-Tetrachlorophenol	ND		ug/kg	160		33.	
1,4-Dioxane ND ug/kg 25 7.6	1,4-Dioxane	ND		ug/kg	25		7.6	

Surrogate	%Recovery Qu	Acceptance alifier Criteria
2-Fluorophenol	40	25-120
Phenol-d6	40	10-120
Nitrobenzene-d5	40	23-120
2-Fluorobiphenyl	40	30-120
2,4,6-Tribromophenol	54	10-136
4-Terphenyl-d14	49	18-120

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number: L2476274

arameter	LCS %Recovery		.CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - We	stborough Lab Ass	sociated sample(s)	: 01-03	Batch:	WG2015218-2 W	G2015218-3		
Acenaphthene	62		59		31-137	5		50
Hexachlorobenzene	69		66		40-140	4		50
Bis(2-chloroethyl)ether	59		52		40-140	13		50
2-Chloronaphthalene	61		59		40-140	3		50
3,3'-Dichlorobenzidine	61		58		40-140	5		50
2,4-Dinitrotoluene	69		70		40-132	1		50
2,6-Dinitrotoluene	66		64		40-140	3		50
Fluoranthene	65		64		40-140	2		50
4-Chlorophenyl phenyl ether	60		58		40-140	3		50
4-Bromophenyl phenyl ether	61		60		40-140	2		50
Bis(2-chloroisopropyl)ether	65		59		40-140	10		50
Bis(2-chloroethoxy)methane	60		56		40-117	7		50
Hexachlorobutadiene	51		46		40-140	10		50
Hexachlorocyclopentadiene	49		43		40-140	13		50
Hexachloroethane	61		52		40-140	16		50
Isophorone	57		54		40-140	5		50
Naphthalene	60		55		40-140	9		50
Nitrobenzene	61		57		40-140	7		50
NDPA/DPA	64		64		36-157	0		50
n-Nitrosodi-n-propylamine	62		57		32-121	8		50
Bis(2-ethylhexyl)phthalate	81		78		40-140	4		50
Butyl benzyl phthalate	86		87		40-140	1		50
Di-n-butylphthalate	72		72		40-140	0		50

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number: L2476274

Di-n-octylphthalate 84	Parameter	LCS %Recovery	LCS Qual %Reco		%Recovery I Limits	RPD	Ri Qual Lin	PD nits
Diethyl phthalate 64 64 40-140 0 50 Dimethyl phthalate 61 60 40-140 2 50 Benzo(a)anthracene 62 60 40-140 3 50 Benzo(a)pyrene 74 73 40-140 1 50 Benzo(b)fluoranthene 69 68 40-140 1 50 Benzo(k)fluoranthene 73 73 40-140 0 50 Chrysene 63 61 40-140 3 50 Chrysene 63 61 40-140 3 50 Acenaphthylene 65 63 40-140 3 50 Anthracene 67 65 40-140 3 50 Benzo(ghi)perylene 70 69 40-140 1 50 Fluorene 63 61 40-140 3 50 Phenanthrene 65 63 40-140 3 50 Indeno(1,2,3-cd)py	Semivolatile Organics by GC/MS - Westk	orough Lab Ass	sociated sample(s): (01-03 Batch:	WG2015218-2	WG2015218-3		
Dimethyl phthalate 61 60 40-140 2 50 Benzo(a)anthracene 62 60 40-140 3 50 Benzo(a)pyrene 74 73 40-140 1 50 Benzo(b)fluoranthene 69 68 40-140 1 50 Benzo(k)fluoranthene 73 73 40-140 0 50 Chrysene 63 61 40-140 3 50 Acenaphthylene 65 63 40-140 3 50 Anthracene 67 65 40-140 3 50 Benzo(ghil)perylene 70 69 40-140 1 50 Fluorene 63 61 40-140 3 50 Phenanthrene 65 63 40-140 3 50 Indeno(1,2,3-cd)pyrene 69 67 40-140 3 50 Indeno(1,2,3-cd)pyrene 67 65 40-140 3 50 <t< td=""><td>Di-n-octylphthalate</td><td>84</td><td>84</td><td>4</td><td>40-140</td><td>0</td><td>5</td><td>60</td></t<>	Di-n-octylphthalate	84	84	4	40-140	0	5	60
Benzo(a)anthracene 62 60 40-140 3 50 Benzo(a)pyrene 74 73 40-140 1 50 Benzo(b)fluoranthene 69 68 40-140 1 50 Benzo(k)fluoranthene 73 73 40-140 0 50 Chrysene 63 61 40-140 3 50 Acenaphthylene 65 63 40-140 3 50 Anthracene 67 65 40-140 3 50 Benzo(ghi)perylene 70 69 40-140 3 50 Fluorene 63 61 40-140 3 50 Phenanthrene 65 63 40-140 3 50 Dibenzo(a,h)anthracene 69 67 40-140 3 50 Indeno(1,2,3-cd)pyrene 67 65 40-140 3 50 Pyrene 65 66 35-142 2 50 Biphenyl <td>Diethyl phthalate</td> <td>64</td> <td>64</td> <td>4</td> <td>40-140</td> <td>0</td> <td>5</td> <td>60</td>	Diethyl phthalate	64	64	4	40-140	0	5	60
Benzo(a)pyrene 74 73 40-140 1 50 Benzo(b)fluoranthene 69 68 40-140 1 50 Benzo(k)fluoranthene 73 73 40-140 0 50 Chrysene 63 61 40-140 3 50 Acenaphthylene 65 63 40-140 3 50 Anthracene 67 65 40-140 3 50 Benzo(ghi)perylene 70 69 40-140 1 50 Fluorene 63 61 40-140 3 50 Phenanthrene 65 63 40-140 3 50 Dibenzo(a,h)anthracene 69 67 40-140 3 50 Indeno(1,2,3-cd)pyrene 67 65 40-140 3 50 Pyrene 65 66 35-142 2 50 Biphenyl 61 59 37-127 3 50 A-Chloroaniline	Dimethyl phthalate	61	60	0	40-140	2	5	0
Benzo(b)fluoranthene 69 68 40-140 1 50 Benzo(k)fluoranthene 73 73 40-140 0 50 Chrysene 63 61 40-140 3 50 Acenaphthylene 65 63 40-140 3 50 Anthracene 67 65 40-140 3 50 Benzo(ghi)perylene 70 69 40-140 1 50 Fluorene 63 61 40-140 3 50 Fluorene 63 61 40-140 3 50 Phenanthrene 65 63 40-140 3 50 Dibenzo(a,h)anthracene 69 67 40-140 3 50 Indeno(1,2,3-cd)pyrene 67 65 40-140 3 50 Pyrene 65 66 35-142 2 50 Biphenyl 61 59 37-127 3 50 A-Chloroaniline	Benzo(a)anthracene	62	60	0	40-140	3	5	0
Benzo(k)fluoranthene 73 73 40-140 0 50 Chrysene 63 61 40-140 3 50 Acenaphthylene 65 63 40-140 3 50 Anthracene 67 65 40-140 3 50 Benzo(ghi)perylene 70 69 40-140 1 50 Fluorene 63 61 40-140 3 50 Phenanthrene 65 63 40-140 3 50 Dibenzo(a,h)anthracene 69 67 40-140 3 50 Indeno(1,2,3-cd)pyrene 67 65 40-140 3 50 Pyrene 65 66 35-142 2 50 Biphenyl 61 59 37-127 3 50 Anliine 42 40 40-140 5 50 4-Chloroaniline 56 56 40-140 0 50 2-Nitroaniline 7	Benzo(a)pyrene	74	7:	3	40-140	1	5	0
Chrysene 63 61 40-140 3 50 Acenaphthylene 65 63 40-140 3 50 Anthracene 67 65 40-140 3 50 Benzo(ghi)perylene 70 69 40-140 1 50 Fluorene 63 61 40-140 3 50 Phenanthrene 65 63 40-140 3 50 Dibenzo(a,h)anthracene 69 67 40-140 3 50 Indeno(1,2,3-cd)pyrene 67 65 40-140 3 50 Pyrene 65 66 35-142 2 50 Biphenyl 61 59 37-127 3 50 Aniline 42 40 40-140 5 50 4-Chloroaniline 56 56 40-140 0 50 2-Nitroaniline 71 71 47-134 0 50	Benzo(b)fluoranthene	69	68	8	40-140	1	5	0
Acenaphthylene 65 63 40-140 3 50 Anthracene 67 65 40-140 3 50 Benzo(ghi)perylene 70 69 40-140 1 50 Fluorene 63 61 40-140 3 50 Phenanthrene 65 63 40-140 3 50 Dibenzo(a,h)anthracene 69 67 40-140 3 50 Indeno(1,2,3-cd)pyrene 67 65 40-140 3 50 Pyrene 65 66 35-142 2 50 Biphenyl 61 59 37-127 3 50 Aniline 42 40 40-140 5 50 4-Chloroaniline 56 56 40-140 0 50 2-Nitroaniline 71 71 47-134 0 50	Benzo(k)fluoranthene	73	7:	3	40-140	0	5	0
Anthracene 67 65 40-140 3 50 Benzo(ghi)perylene 70 69 40-140 1 50 Fluorene 63 61 40-140 3 50 Phenanthrene 65 63 40-140 3 50 Dibenzo(a,h)anthracene 69 67 40-140 3 50 Indeno(1,2,3-cd)pyrene 67 65 40-140 3 50 Pyrene 65 66 35-142 2 50 Biphenyl 61 59 37-127 3 50 Aniline 42 40 40-140 5 50 4-Chloroaniline 56 56 40-140 0 50 2-Nitroaniline 71 71 47-134 0 50	Chrysene	63	6	1	40-140	3	5	60
Benzo(ghi)perylene 70 69 40-140 1 50 Fluorene 63 61 40-140 3 50 Phenanthrene 65 63 40-140 3 50 Dibenzo(a,h)anthracene 69 67 40-140 3 50 Indeno(1,2,3-cd)pyrene 67 65 40-140 3 50 Pyrene 65 66 35-142 2 50 Biphenyl 61 59 37-127 3 50 Aniline 42 40 40-140 5 50 4-Chloroaniline 56 56 40-140 0 50 2-Nitroaniline 71 71 47-134 0 50	Acenaphthylene	65	63	3	40-140	3	5	0
Fluorene 63 61 40-140 3 50 Phenanthrene 65 63 40-140 3 50 Dibenzo(a,h)anthracene 69 67 40-140 3 50 Indeno(1,2,3-cd)pyrene 67 65 40-140 3 50 Pyrene 65 66 35-142 2 50 Biphenyl 61 59 37-127 3 50 Aniline 42 40 40-140 5 50 4-Chloroaniline 56 56 40-140 0 50 2-Nitroaniline 71 71 47-134 0 50	Anthracene	67	6	5	40-140	3	5	0
Phenanthrene 65 63 40-140 3 50 Dibenzo(a,h)anthracene 69 67 40-140 3 50 Indeno(1,2,3-cd)pyrene 67 65 40-140 3 50 Pyrene 65 66 35-142 2 50 Biphenyl 61 59 37-127 3 50 Aniline 42 40 40-140 5 50 4-Chloroaniline 56 56 40-140 0 50 2-Nitroaniline 71 71 47-134 0 50	Benzo(ghi)perylene	70	69	9	40-140	1	5	0
Dibenzo(a,h)anthracene 69 67 40-140 3 50 Indeno(1,2,3-cd)pyrene 67 65 40-140 3 50 Pyrene 65 66 35-142 2 50 Biphenyl 61 59 37-127 3 50 Aniline 42 40 40-140 5 50 4-Chloroaniline 56 56 40-140 0 50 2-Nitroaniline 71 71 47-134 0 50	Fluorene	63	6	1	40-140	3	5	0
Indeno(1,2,3-cd)pyrene 67 65 40-140 3 50 Pyrene 65 66 35-142 2 50 Biphenyl 61 59 37-127 3 50 Aniline 42 40 40-140 5 50 4-Chloroaniline 56 56 40-140 0 50 2-Nitroaniline 71 71 47-134 0 50	Phenanthrene	65	63	3	40-140	3	5	0
Pyrene 65 66 35-142 2 50 Biphenyl 61 59 37-127 3 50 Aniline 42 40 40-140 5 50 4-Chloroaniline 56 56 40-140 0 50 2-Nitroaniline 71 71 47-134 0 50	Dibenzo(a,h)anthracene	69	6	7	40-140	3	5	0
Biphenyl 61 59 37-127 3 50 Aniline 42 40 40-140 5 50 4-Chloroaniline 56 56 40-140 0 50 2-Nitroaniline 71 71 47-134 0 50	Indeno(1,2,3-cd)pyrene	67	6	5	40-140	3	5	0
Aniline 42 40 40-140 5 50 4-Chloroaniline 56 56 40-140 0 50 2-Nitroaniline 71 71 47-134 0 50	Pyrene	65	60	6	35-142	2	5	0
4-Chloroaniline 56 56 40-140 0 50 2-Nitroaniline 71 71 47-134 0 50	Biphenyl	61	59	9	37-127	3	5	0
2-Nitroaniline 71 71 47-134 0 50	Aniline	42	40	0	40-140	5	5	0
	4-Chloroaniline	56	50	6	40-140	0	5	0
3-Nitroaniline 54 56 26-129 4 50	2-Nitroaniline	71	7	1	47-134	0	5	60
	3-Nitroaniline	54	50	6	26-129	4	5	0
4-Nitroaniline 65 64 41-125 2 50	4-Nitroaniline	65	64	4	41-125	2	5	0
Dibenzofuran 62 61 40-140 2 50	Dibenzofuran	62	6	1	40-140	2	5	0

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number: L2476274

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	, RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westb	orough Lab As	sociated sample(s): 01-03	Batch: WG2015218-2	WG2015218-3	
2-Methylnaphthalene	57	53	40-140	7	50
1,2,4,5-Tetrachlorobenzene	58	54	40-117	7	50
Acetophenone	61	57	14-144	7	50
2,4,6-Trichlorophenol	59	57	30-130	3	50
p-Chloro-m-cresol	63	61	26-103	3	50
2-Chlorophenol	65	58	25-102	11	50
2,4-Dichlorophenol	63	60	30-130	5	50
2,4-Dimethylphenol	66	64	30-130	3	50
2-Nitrophenol	70	66	30-130	6	50
4-Nitrophenol	78	81	11-114	4	50
2,4-Dinitrophenol	68	66	4-130	3	50
4,6-Dinitro-o-cresol	75	77	10-130	3	50
Pentachlorophenol	58	57	17-109	2	50
Phenol	58	53	26-90	9	50
2-Methylphenol	62	58	30-130.	7	50
3-Methylphenol/4-Methylphenol	64	62	30-130	3	50
2,4,5-Trichlorophenol	64	64	30-130	0	50
Carbazole	68	66	54-128	3	50
Atrazine	64	64	40-140	0	50
Benzaldehyde	56	49	40-140	13	50
Caprolactam	80	78	15-130	3	50
2,3,4,6-Tetrachlorophenol	63	61	40-140	3	50
1,4-Dioxane	42	34	Q 40-140	21	50

Project Name: 52-54 CANAL ST, LYONS

Lab Number:

L2476274

Project Number: 037112

Report Date:

01/24/25

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG2015218-2 WG2015218-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	66	59	25-120
Phenol-d6	64	59	10-120
Nitrobenzene-d5	64	58	23-120
2-Fluorobiphenyl	61	58	30-120
2,4,6-Tribromophenol	76	74	10-136
4-Terphenyl-d14	69	68	18-120

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number:

L2476274

Report Date:

01/24/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD al Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by C Client ID: EB-01	GC/MS - Westb	orough Lab	Associated	d sample(s): 01	-03	QC Batch ID	: WG2015218	3-4 WG	32015218-5	QC S	ample:	L2476274-01
Acenaphthene	ND	1450	870	60		880	61		31-137	1		50
Hexachlorobenzene	ND	1450	840	58		860	59		40-140	2		50
Bis(2-chloroethyl)ether	ND	1450	940	65		980	68		40-140	4		50
2-Chloronaphthalene	ND	1450	930	64		920	64		40-140	1		50
3,3'-Dichlorobenzidine	ND	1450	190	13	Q	130J	9	Q	40-140	38		50
2,4-Dinitrotoluene	ND	1450	790	55		830	57		40-132	5		50
2,6-Dinitrotoluene	ND	1450	890	61		890	61		40-140	0		50
Fluoranthene	58J	1450	1000	69		970	67		40-140	3		50
4-Chlorophenyl phenyl ether	ND	1450	900	62		930	64		40-140	3		50
4-Bromophenyl phenyl ether	ND	1450	870	60		870	60		40-140	0		50
Bis(2-chloroisopropyl)ether	ND	1450	1100	76		1200	83		40-140	9		50
Bis(2-chloroethoxy)methane	ND	1450	990	68		970	67		40-117	2		50
Hexachlorobutadiene	ND	1450	950	66		970	67		40-140	2		50
Hexachlorocyclopentadiene	ND	1450	810	56		1000	69		40-140	21		50
Hexachloroethane	ND	1450	880	61		920	64		40-140	4		50
sophorone	ND	1450	960	66		940	65		40-140	2		50
Naphthalene	ND	1450	920	64		940	65		40-140	2		50
Nitrobenzene	ND	1450	970	67		970	67		40-140	0		50
NDPA/DPA	ND	1450	870	60		890	61		36-157	2		50
n-Nitrosodi-n-propylamine	ND	1450	960	66		950	66		32-121	1		50
Bis(2-ethylhexyl)phthalate	ND	1450	960	66		990	68		40-140	3		50
Butyl benzyl phthalate	ND	1450	940	65		950	66		40-140	1		50
Di-n-butylphthalate	ND	1450	910	63		930	64		40-140	2		50

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number: L2476274

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by G Client ID: EB-01	C/MS - Westk	oorough Lab	Associated	d sample(s): 01	-03 QC Batch ID	: WG2015218	8-4 WG2015218-5	QC S	Sample: L2476274-01
Di-n-octylphthalate	ND	1450	970	67	1000	69	40-140	3	50
Diethyl phthalate	ND	1450	870	60	890	61	40-140	2	50
Dimethyl phthalate	ND	1450	940	65	910	63	40-140	3	50
Benzo(a)anthracene	39J	1450	910	63	900	62	40-140	1	50
Benzo(a)pyrene	ND	1450	850	59	870	60	40-140	2	50
Benzo(b)fluoranthene	43J	1450	890	61	880	61	40-140	1	50
Benzo(k)fluoranthene	ND	1450	810	56	840	58	40-140	4	50
Chrysene	35J	1450	910	63	910	63	40-140	0	50
Acenaphthylene	ND	1450	1000	69	980	68	40-140	2	50
Anthracene	ND	1450	880	61	890	61	40-140	1	50
Benzo(ghi)perylene	30J	1450	920	64	970	67	40-140	5	50
Fluorene	ND	1450	890	61	900	62	40-140	1	50
Phenanthrene	34J	1450	940	65	910	63	40-140	3	50
Dibenzo(a,h)anthracene	ND	1450	870	60	930	64	40-140	7	50
Indeno(1,2,3-cd)pyrene	26J	1450	880	61	920	64	40-140	4	50
Pyrene	52J	1450	1000	69	970	67	35-142	3	50
Biphenyl	ND	1450	950	66	940	65	37-127	1	50
Aniline	ND	1450	730	50	670	46	40-140	9	50
4-Chloroaniline	ND	1450	700	48	680	47	40-140	3	50
2-Nitroaniline	ND	1450	1100	76	1000	69	47-134	10	50
3-Nitroaniline	ND	1450	740	51	640	44	26-129	14	50
4-Nitroaniline	ND	1450	790	55	750	52	41-125	5	50
Dibenzofuran	ND	1450	870	60	880	61	40-140	1	50

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number:

L2476274

Report Date:

01/24/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD I Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by Go Client ID: EB-01	C/MS - Westb	oorough Lab	Associated	d sample(s): 01	-03	QC Batch ID	: WG2015218	3-4 WG	2015218-5	QC S	ample:	L2476274-01
2-Methylnaphthalene	ND	1450	850	59		840	58		40-140	1		50
1,2,4,5-Tetrachlorobenzene	ND	1450	1000	69		1000	69		40-117	0		50
Acetophenone	ND	1450	1000	69		1000	69		14-144	0		50
2,4,6-Trichlorophenol	ND	1450	990	68		970	67		30-130	2		50
o-Chloro-m-cresol	ND	1450	1000	69		1000	69		26-103	0		50
2-Chlorophenol	ND	1450	950	66		960	66		25-102	1		50
2,4-Dichlorophenol	ND	1450	1000	69		970	67		30-130	3		50
2,4-Dimethylphenol	ND	1450	1000	69		1000	69		30-130	0		50
2-Nitrophenol	ND	1450	800	55		910	63		30-130	13		50
4-Nitrophenol	ND	1450	1000	69		1000	69		11-114	0		50
2,4-Dinitrophenol	ND	1450	ND	0	Q	ND	0	Q	4-130	NC		50
4,6-Dinitro-o-cresol	ND	1450	97J	7	Q	210J	15		10-130	74	Q	50
Pentachlorophenol	ND	1450	910	63		850	59		17-109	7		50
Phenol	ND	1450	1000	69		1000	69		26-90	0		50
2-Methylphenol	ND	1450	980	68		970	67		30-130.	1		50
3-Methylphenol/4-Methylphenol	ND	1450	990	68		980	68		30-130	1		50
2,4,5-Trichlorophenol	ND	1450	1000	69		1000	69		30-130	0		50
Carbazole	ND	1450	880	61		880	61		54-128	0		50
Atrazine	ND	1450	1000	69		1000	69		40-140	0		50
Benzaldehyde	ND	1450	1000	69		980	68		40-140	2		50
Caprolactam	ND	1450	1300	90		1300	90		15-130	0		50
2,3,4,6-Tetrachlorophenol	ND	1450	950	66		940	65		40-140	1		50
1,4-Dioxane	ND	1450	670	46		760	53		40-140	13		50

Matrix Spike Analysis Batch Quality Control

Project Name: 52-54 CANAL

52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number:

L2476274

Report Date:

01/24/25

	Native	MS	MS	MS		MSD	MSD	1	Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 QC Batch ID: WG2015218-4 WG2015218-5 QC Sample: L2476274-01

Client ID: EB-01

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
2,4,6-Tribromophenol	58	61	10-136
2-Fluorobiphenyl	65	64	30-120
2-Fluorophenol	73	74	25-120
4-Terphenyl-d14	61	62	18-120
Nitrobenzene-d5	68	69	23-120
Phenol-d6	72	71	10-120

PCBS

Project Name: Lab Number: 52-54 CANAL ST, LYONS L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: Date Collected: 12/27/24 14:00 L2476274-01

Client ID: Date Received: 12/27/24 EB-01 Sample Location: Field Prep: 52-54 CANAL ST. LYONS, NEW YORK Not Specified

Sample Depth:

Percent Solids:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 01/02/25 08:00 Analytical Method: 1,8082A

Cleanup Method: EPA 3665A Analytical Date: 01/03/25 01:06 Cleanup Date: 01/02/25 Analyst: MEO Cleanup Method: EPA 3660B 91%

Cleanup Date: 01/02/25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Average 4040	ND			54.0	4.50		Δ.			
Aroclor 1016	ND		ug/kg	51.3	4.56	1	Α			
Aroclor 1221	ND		ug/kg	51.3	5.14	1	Α			
Aroclor 1232	ND		ug/kg	51.3	10.9	1	Α			
Aroclor 1242	ND		ug/kg	51.3	6.92	1	Α			
Aroclor 1248	ND		ug/kg	51.3	7.70	1	Α			
Aroclor 1254	ND		ug/kg	51.3	5.61	1	Α			
Aroclor 1260	ND		ug/kg	51.3	9.48	1	Α			
Aroclor 1262	ND		ug/kg	51.3	6.52	1	Α			
Aroclor 1268	ND		ug/kg	51.3	5.32	1	Α			
PCBs, Total	ND		ug/kg	51.3	4.56	1	Α			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55		30-150	Α
Decachlorobiphenyl	55		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	55		30-150	В
Decachlorobiphenyl	56		30-150	В

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-02 Date Collected: 12/27/24 14:15

Client ID: ESW-01 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Cample Location. 32-34 CANAL ST. LTONS, NEW TORK THEIR TEP.

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 01/02/25 08:00

Analytical Date: 01/03/25 01:28 Cleanup Method: EPA 3665A
Analyst: MEO Cleanup Date: 01/02/25
Percent Solids: 82% Cleanup Method: EPA 3660B

Cleanup Date: 01/02/25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	stborough Lab						
Aroclor 1016	ND		ug/kg	57.1	5.07	1	Α
Aroclor 1221	ND		ug/kg	57.1	5.72	1	A
Aroclor 1232	ND		ug/kg	57.1	12.1	1	Α
Aroclor 1242	ND		ug/kg	57.1	7.69	1	Α
Aroclor 1248	ND		ug/kg	57.1	8.56	1	Α
Aroclor 1254	ND		ug/kg	57.1	6.24	1	Α
Aroclor 1260	ND		ug/kg	57.1	10.5	1	Α
Aroclor 1262	ND		ug/kg	57.1	7.25	1	Α
Aroclor 1268	ND		ug/kg	57.1	5.91	1	Α
PCBs, Total	ND		ug/kg	57.1	5.07	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60		30-150	Α
Decachlorobiphenyl	63		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	58		30-150	В
Decachlorobiphenyl	60		30-150	В

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-03 Date Collected: 12/27/24 14:30

Client ID: ESW-02 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 01/02/25 08:00

Analytical Date: 01/03/25 01:36 Cleanup Method: EPA 3665A Cleanup Date: 01/02/25

Percent Solids: 91% Cleanup Method: EPA 3660B Cleanup Date: 01/02/25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by (GC - Westborough Lab						
Aroclor 1016	ND		ug/kg	50.5	4.48	1	А
Aroclor 1221	ND		ug/kg	50.5	5.06	1	Α
Aroclor 1232	ND		ug/kg	50.5	10.7	1	Α
Aroclor 1242	ND		ug/kg	50.5	6.81	1	Α
Aroclor 1248	ND		ug/kg	50.5	7.58	1	Α
Aroclor 1254	ND		ug/kg	50.5	5.52	1	Α
Aroclor 1260	ND		ug/kg	50.5	9.33	1	Α
Aroclor 1262	ND		ug/kg	50.5	6.41	1	Α
Aroclor 1268	ND		ug/kg	50.5	5.23	1	Α
PCBs, Total	ND		ug/kg	50.5	4.48	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	59		30-150	Α
Decachlorobiphenyl	63		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	57		30-150	В
Decachlorobiphenyl	60		30-150	В

L2476274

Lab Number:

Project Name: 52-54 CANAL ST, LYONS

1,8082A

01/03/25 00:43

Project Number: 037112 Report Date: 01/24/25

Method Blank Analysis
Batch Quality Control

Batch Quality Control

Analyst: MEO

Analytical Method:

Analytical Date:

Extraction Method: EPA 3546
Extraction Date: 01/02/25 08:00
Cleanup Method: EPA 3665A
Cleanup Date: 01/02/25
Cleanup Method: EPA 3660B
Cleanup Date: 01/02/25

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC - '	Westborough	n Lab for s	ample(s):	01-03	Batch:	WG20	15555-1
Aroclor 1016	ND		ug/kg	49.7		4.41	Α
Aroclor 1221	ND		ug/kg	49.7		4.98	Α
Aroclor 1232	ND		ug/kg	49.7		10.5	Α
Aroclor 1242	ND		ug/kg	49.7		6.70	Α
Aroclor 1248	ND		ug/kg	49.7		7.46	Α
Aroclor 1254	ND		ug/kg	49.7		5.44	Α
Aroclor 1260	ND		ug/kg	49.7		9.18	Α
Aroclor 1262	ND		ug/kg	49.7		6.31	Α
Aroclor 1268	ND		ug/kg	49.7		5.15	Α
PCBs, Total	ND		ug/kg	49.7		4.41	Α

		Acceptance			
Surrogate	%Recovery Qualifier	Criteria	Column		
0.45 C Tetrachlers in unders	24	20.450			
2,4,5,6-Tetrachloro-m-xylene	64	30-150	Α		
Decachlorobiphenyl	66	30-150	Α		
2,4,5,6-Tetrachloro-m-xylene	61	30-150	В		
Decachlorobiphenyl	65	30-150	В		

Lab Control Sample Analysis Batch Quality Control

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number:

L2476274

Report Date:

01/24/25

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual %	Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - We	estborough Lab Asso	ociated sample(s): 01-03	Batch: \	NG2015555-2	WG2015555-3			
Aroclor 1016	65		67		40-140	3		50	Α
Aroclor 1260	66		67		40-140	2		50	Α

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	64	66	30-150 A
Decachlorobiphenyl	68	69	30-150 A
2,4,5,6-Tetrachloro-m-xylene	61	62	30-150 B
Decachlorobiphenyl	63	63	30-150 B

Matrix Spike Analysis Batch Quality Control

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number:

L2476274

Report Date:

01/24/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits	<u>Colum</u> n
Polychlorinated Biphenyls Client ID: EB-01	by GC - Westh	oorough Lab	Associated	d sample(s): 01	1-03 (QC Batch ID	: WG2015555	5-4 WG	2015555-5	QC S	Sample:	L247627	74-01
Aroclor 1016	ND	318	166	52		164	49		40-140	1		50	Α
Aroclor 1260	ND	318	156	49		154	46		40-140	1		50	Α

	MS	MSD	Acceptance		
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	55	52	30-150	А	
Decachlorobiphenyl	55	56	30-150	Α	
2,4,5,6-Tetrachloro-m-xylene	53	51	30-150	В	
Decachlorobiphenyl	56	56	30-150	В	

INORGANICS & MISCELLANEOUS

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-01 Date Collected: 12/27/24 14:00

Client ID: EB-01 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Solids, Total	90.8		%	0.100	NA	1	-	12/28/24 11:01	121,2540G	ROI

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-02 Date Collected: 12/27/24 14:15

Client ID: ESW-01 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lat									
Solids, Total	81.5		%	0.100	NA	1	-	12/28/24 11:01	121,2540G	ROI

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-03 Date Collected: 12/27/24 14:30

Client ID: ESW-02 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	91.0		%	0.100	NA	1	-	12/28/24 11:01	121,2540G	ROI

L2476274

Lab Number:

Lab Duplicate Analysis

Batch Quality Control

52-54 CANAL ST, LYONS Batch Quality

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01-03	QC Batch ID:	WG2014351-1	QC Sample:	L2476274-01	Client ID:	EB-01
Solids, Total	90.8		92.2	%	2		20

Project Name:

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Lab Number: L2476274

Report Date: 01/24/25

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2476274-01A	Vial MeOH preserved	Α	NA		2.5	Υ	Absent		NYTCL-8260HLW-R2(14)
L2476274-01A1	Vial MeOH preserved	Α	NA		2.5	Υ	Absent		NYTCL-8260HLW-R2(14)
L2476274-01A2	Vial MeOH preserved	Α	NA		2.5	Υ	Absent		NYTCL-8260HLW-R2(14)
L2476274-01B	Vial water preserved	Α	NA		2.5	Υ	Absent	28-DEC-24 04:55	NYTCL-8260HLW-R2(14)
L2476274-01B1	Vial water preserved	Α	NA		2.5	Υ	Absent	28-DEC-24 04:55	NYTCL-8260HLW-R2(14)
L2476274-01B2	Vial water preserved	Α	NA		2.5	Υ	Absent	28-DEC-24 04:55	NYTCL-8260HLW-R2(14)
L2476274-01C	Vial water preserved	Α	NA		2.5	Υ	Absent	28-DEC-24 04:55	NYTCL-8260HLW-R2(14)
L2476274-01C1	Vial water preserved	Α	NA		2.5	Υ	Absent	28-DEC-24 04:55	NYTCL-8260HLW-R2(14)
L2476274-01C2	Vial water preserved	Α	NA		2.5	Υ	Absent	28-DEC-24 04:55	NYTCL-8260HLW-R2(14)
L2476274-01D	Plastic 120ml unpreserved	Α	NA		2.5	Υ	Absent		TS(7)
L2476274-01D1	Plastic 120ml unpreserved	Α	NA		2.5	Υ	Absent		TS(7)
L2476274-01D2	Plastic 120ml unpreserved	Α	NA		2.5	Υ	Absent		TS(7)
L2476274-01E	Glass 250ml/8oz unpreserved	Α	NA		2.5	Υ	Absent		NYTCL-8270(14),NYTCL-8082(365)
L2476274-01E1	Glass 250ml/8oz unpreserved	Α	NA		2.5	Υ	Absent		NYTCL-8270(14),NYTCL-8082(365)
L2476274-01E2	Glass 250ml/8oz unpreserved	Α	NA		2.5	Υ	Absent		NYTCL-8270(14),NYTCL-8082(365)
L2476274-02A	Vial MeOH preserved	Α	NA		2.5	Υ	Absent		NYTCL-8260HLW-R2(14)
L2476274-02B	Vial water preserved	Α	NA		2.5	Υ	Absent	28-DEC-24 04:55	NYTCL-8260HLW-R2(14)
L2476274-02C	Vial water preserved	Α	NA		2.5	Υ	Absent	28-DEC-24 04:55	NYTCL-8260HLW-R2(14)
L2476274-02D	Plastic 120ml unpreserved	Α	NA		2.5	Υ	Absent		TS(7)
L2476274-02E	Glass 250ml/8oz unpreserved	Α	NA		2.5	Υ	Absent		NYTCL-8270(14),NYTCL-8082(365)
L2476274-03A	Vial MeOH preserved	Α	NA		2.5	Υ	Absent		NYTCL-8260HLW-R2(14)
L2476274-03B	Vial water preserved	Α	NA		2.5	Υ	Absent	28-DEC-24 04:55	NYTCL-8260HLW-R2(14)
L2476274-03C	Vial water preserved	Α	NA		2.5	Υ	Absent	28-DEC-24 04:55	NYTCL-8260HLW-R2(14)

Lab Number: L2476274

Report Date: 01/24/25

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2476274-03D	Plastic 120ml unpreserved	А	NA		2.5	Υ	Absent		TS(7)
L2476274-03E	Glass 250ml/8oz unpreserved	Α	NA		2.5	Υ	Absent		NYTCL-8270(14),NYTCL-8082(365)

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Figure 1. Description of moisture content, where applicable. (Dod report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound light (TCI) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

peaks eluting from Hexane through Dodecane.

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274
Project Number: 037112 Report Date: 01/24/25

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274
Project Number: 037112 Report Date: 01/24/25

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 27

Page 1 of 2

Published Date: 01/24/2025

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270E:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

MADEP-APH.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

Document Type: Form Pre-Qualtrax Document ID: 08-113

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 27

Published Date: 01/24/2025

Page 2 of 2

Certification IDs:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANÅB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Διρικ	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Cod	lay	15	Page	r (Rec'd Lab	2/28	124		ALPHA JOB#	4		
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information		-		333	Deliv	erable	S				Billing Information			
TEL: 508-898-9220 FAX: 508-898-9193	TEL 508-822-9300 FAX: 508-822-3288	Project Name: 52-54						ASP.			ASP-		Same as Client	Info		
Todagraficas	0.04040346466	Project Location: 52-5	4 Land S	t Lyans	New	York		EQu	S (1 File)	K	EQui	S (4 File)	PO#			
Client Information		Project # 037/12		-				Othe	r.							
Client Montros	e Environmente) (Use Project name as Pr	roject#)				Regu	llatory	Require	nent			Disposal Site Inform	ation		
Address: 100 S. C	linton Ave.	Project Manager: Katt	refine 1	lelsen				NY TO	ogs	X	NY Pa	rt 375	Please identify below to	cation of		
Suite 2330	Rochester, NY	ALPHAQuote #:			F4 R			AWQ	Standards	X	NY CF	-51	applicable disposal facil	ities.		
Phone: 585-44	7-3709	Turn-Around Time						NY R	estricted U	se 🗌	Other		Disposal Facility:			
Fax:	11-247	Standard	×	Due Date	5			NY U	restricted	Use			□ NJ 📉	NY		
Email: cyanmalia	@montase-envio	Rush (only if pre approved		# of Days				NYC:	Sewer Disc	harge			Other:			
These samples have t		4114					ANA	LYSIS					Sample Filtration	T.		
Other project specific	c requirements/com	ments:											Done	0		
Please specify Metals	s or TAL.						(8260)	(otrs)	(8083)				Lab to do Preservation Lab to do (Please Specify bel	B (ow)		
ALPHA Lab ID		world in	Colle	ection	Sample	Sampler's	1 j	12	100		118					
(Lab Use Only)	3	ample ID	Date	Time	Matrix	Initials	1065	SVOCS	3			4-4-1	Sample Specific Comr	nents		
76274-0	EB-01		12/27/24	1400	50	RH	×	X	×				MS/MSD	15		
- 03	ESW-01		12/27/24		50	RM	X	X	x				1.01	5		
	ESW-02		12/27/24		50	RM	×	х	×					5		
Preservative Code: A = None B = HCl	Container Code P = Plastic A = Amber Glass	Westboro: Certification N Mansfield: Certification N			Con	tainer Type	V, P	A	A				Please print clearl and completely. S	amples can		
$C = HNO_3$ $D = H_2SO_4$ E = NaOH	V = Viat G = Glass B = Bacteria Cup			F	reservative	AF	A	A				not be logged in a turnaround time of start until any amb	ock will not			
F = MeOH G = NaHSO ₄	C = Cube O = Other	Relinquished	Ву:	Date/	Time	1	Recei	ved By	tī.		Date	Time	resolved. BY EXE	CUTING		
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	E ≈ Encore D = BOD Bottle		W MOT PACE			ROCH	5/6	P	nca cd	12,	127/2	1/6:3	TO BE BOUND BY ALPHA			
Form No: 01-25 HC (rev. 3	30-Sept-2013\		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			Emil				12	121	0/00	TERMS & CONDI (See reverse side.			
- Sold of Follows	or other rolls									15		210-0	4-28-18-18-18-18-18-18-18-18-18-18-18-18-18			

ANALYTICAL REPORT

Lab Number: L2476426

Client: Montrose Environmental

100 S. Clinton Ave

Suite 2330

Rochester, NY 14604

ATTN: Katie Nelson Phone: (716) 329-0672

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112 Report Date: 01/27/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number:

L2476426

Report Date: 01/27/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2476426-01	EB-02	SOIL	52-54 CANAL ST, LYONS, NEW YORK	12/30/24 10:20	12/30/24
L2476426-02	FD-01	SOIL	52-54 CANAL ST, LYONS, NEW YORK	12/30/24 11:11	12/30/24
L2476426-03	ESW-03	SOIL	52-54 CANAL ST, LYONS, NEW YORK	12/30/24 10:30	12/30/24
L2476426-04	ESW-04	SOIL	52-54 CANAL ST, LYONS, NEW YORK	12/30/24 10:35	12/30/24
L2476426-05	EQUIPMENT BLANK	WATER	52-54 CANAL ST, LYONS, NEW YORK	12/30/24 08:30	12/30/24

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

rodoc contact i rojost management at coo oz i ozze min any quodicno.	

Please contact Project Management at 800-624-9220 with any questions

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426
Project Number: 037112 Report Date: 01/27/25

Case Narrative (continued)

Report Revision

January 27, 2025: At the client's request, the Volatile Organics and Semivolatile Organics reporting lists have been changed.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 01/27/25

Custen Walker Cristin Walker

ORGANICS

VOLATILES

L2476426

12/30/24 10:20

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

SAMPLE RESULTS

Report Date: 01/27/25

Lab ID: L2476426-01

Client ID: EB-02

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK

Date Received: 12/30/24
Field Prep: Not Specified

Lab Number:

Date Collected:

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260D
Analytical Date: 01/05/25 21:32

Analyst: JIC Percent Solids: 97%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	Westborough Lab						
Methylene chloride	ND		ug/kg	6.1	2.8	1	
1,1-Dichloroethane	ND		ug/kg	1.2	0.18	1	
Chloroform	ND		ug/kg	1.8	0.17	1	
Carbon tetrachloride	ND		ug/kg	1.2	0.28	1	
1,2-Dichloropropane	ND		ug/kg	1.2	0.15	1	
Dibromochloromethane	ND		ug/kg	1.2	0.17	1	
1,1,2-Trichloroethane	ND		ug/kg	1.2	0.33	1	
Tetrachloroethene	ND		ug/kg	0.61	0.24	1	
Chlorobenzene	ND		ug/kg	0.61	0.16	1	
Trichlorofluoromethane	ND		ug/kg	4.9	0.85	1	
1,2-Dichloroethane	ND		ug/kg	1.2	0.32	1	
1,1,1-Trichloroethane	ND		ug/kg	0.61	0.20	1	
Bromodichloromethane	ND		ug/kg	0.61	0.13	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.34	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.61	0.19	1	
Bromoform	ND		ug/kg	4.9	0.30	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.61	0.20	1	
Benzene	ND		ug/kg	0.61	0.20	1	
Toluene	ND		ug/kg	1.2	0.67	1	
Ethylbenzene	ND		ug/kg	1.2	0.17	1	
Chloromethane	ND		ug/kg	4.9	1.1	1	
Bromomethane	ND		ug/kg	2.4	0.71	1	
Vinyl chloride	ND		ug/kg	1.2	0.41	1	
Chloroethane	ND		ug/kg	2.4	0.55	1	
1,1-Dichloroethene	ND		ug/kg	1.2	0.29	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.17	1	
Trichloroethene	ND		ug/kg	0.61	0.17	1	
1,2-Dichlorobenzene	ND		ug/kg	2.4	0.18	1	

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-01 Date Collected: 12/30/24 10:20

Client ID: EB-02 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	2.4	0.18	1	
1,4-Dichlorobenzene	ND		ug/kg	2.4	0.21	1	
Methyl tert butyl ether	ND		ug/kg	2.4	0.25	1	
p/m-Xylene	ND		ug/kg	2.4	0.69	1	
o-Xylene	ND		ug/kg	1.2	0.36	1	
Xylenes, Total	ND		ug/kg	1.2	0.36	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.21	1	
Styrene	ND		ug/kg	1.2	0.24	1	
Dichlorodifluoromethane	ND		ug/kg	12	1.1	1	
Acetone	ND		ug/kg	12	5.9	1	
Carbon disulfide	ND		ug/kg	12	5.6	1	
2-Butanone	ND		ug/kg	12	2.7	1	
4-Methyl-2-pentanone	ND		ug/kg	12	1.6	1	
2-Hexanone	ND		ug/kg	12	1.4	1	
Bromochloromethane	ND		ug/kg	2.4	0.25	1	
1,2-Dibromoethane	ND		ug/kg	1.2	0.34	1	
n-Butylbenzene	ND		ug/kg	1.2	0.20	1	
sec-Butylbenzene	ND		ug/kg	1.2	0.18	1	
tert-Butylbenzene	ND		ug/kg	2.4	0.14	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.7	1.2	1	
Isopropylbenzene	ND		ug/kg	1.2	0.13	1	
p-Isopropyltoluene	ND		ug/kg	1.2	0.13	1	
n-Propylbenzene	ND		ug/kg	1.2	0.21	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.4	0.40	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.4	0.33	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.4	0.24	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.4	0.41	1	
Methyl Acetate	ND		ug/kg	4.9	1.2	1	
Cyclohexane	ND		ug/kg	12	0.67	1	
Freon-113	ND		ug/kg	4.9	0.85	1	
Methyl cyclohexane	ND		ug/kg	4.9	0.74	1	

Project Name: 52-54 CANAL ST LYONS **Lab Number:** L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-01 Date Collected: 12/30/24 10:20

Client ID: EB-02 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by EPA 5035 Low - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	114	70-130	

L2476426

12/30/24 11:11

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

SAMPLE RESULTS

Report Date: 01/27/25

Lab Number:

Date Collected:

Lab ID: L2476426-02

Date Received: Client ID: FD-01 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260D Analytical Date: 01/05/25 21:06

Analyst: JIC 96% Percent Solids:

1,1-Dichloroethane ND ug/kg 1.1 0.16 1 Chloroform ND ug/kg 1.7 0.16 1 Carbon tetrachloride ND ug/kg 1.1 0.26 1 1,2-Dichloropropane ND ug/kg 1.1 0.14 1 Dibromochloromethane ND ug/kg 1.1 0.16 1 Tetrachloroethane ND ug/kg 1.1 0.30 1 Tetrachloroethane ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.14 1 Trichlorofluoromethane ND ug/kg 0.56 0.14 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromoethane ND ug/kg 0.56 0.12	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/kg 1.1 0.16 1 Chloroform ND ug/kg 1.7 0.16 1 Carbon tetrachloride ND ug/kg 1.1 0.26 1 1,2-Dichloropropane ND ug/kg 1.1 0.14 1 Dibromochloromethane ND ug/kg 1.1 0.30 1 1,1,2-Trichloroethane ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.22 1 Trichlorofuloromethane ND ug/kg 0.56 0.14 1 1,2-Dichloroethane ND ug/kg 4.5 0.78 1 1,2-Dichloroethane ND ug/kg 0.56 0.12 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 Bromodichloromethane ND ug/kg 0.56 <t< td=""><td>Volatile Organics by EPA 5035 Low -</td><td>Westborough Lab</td><td></td><td></td><td></td><td></td><td></td></t<>	Volatile Organics by EPA 5035 Low -	Westborough Lab					
Chloroform ND ug/kg 1.7 0.16 1 Carbon tetrachloride ND ug/kg 1.1 0.26 1 1,2-Dichloropropane ND ug/kg 1.1 0.14 1 Dibromochloromethane ND ug/kg 1.1 0.16 1 1,1,2-Trichloroethane ND ug/kg 1.1 0.30 1 Tetrachloroethane ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.14 1 Trichloroethane ND ug/kg 4.5 0.78 1 1,2-Dichloroethane ND ug/kg 0.56 0.14 1 1,1-Trichloroethane ND ug/kg 0.56 0.12 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 trans-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 0.56 0.18	Methylene chloride	ND		ug/kg	5.6	2.6	1
Carbon tetrachloride ND ug/kg 1.1 0.26 1 1,2-Dichloropropane ND ug/kg 1.1 0.14 1 Dibromochloromethane ND ug/kg 1.1 0.16 1 1,1,2-Trichloroethane ND ug/kg 1.1 0.30 1 Tetrachloroethane ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.22 1 Trichloroethane ND ug/kg 0.56 0.14 1 1,2-Dichloroethane ND ug/kg 1.1 0.29 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 trans-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 trans-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 psomoform ND ug/kg 0.56 <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.1</td> <td>0.16</td> <td>1</td>	1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
1,2-Dichloropropane ND	Chloroform	ND		ug/kg	1.7	0.16	1
Dibromochloromethane ND ug/kg 1.1 0.16 1 1,1,2-Trichloroethane ND ug/kg 1.1 0.30 1 Tetrachloroethene ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.14 1 Trichlorofluoromethane ND ug/kg 4.5 0.78 1 1,2-Dichloroethane ND ug/kg 1.1 0.29 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 trans-1,3-Dichloropropene ND ug/kg 0.56 0.12 1 trans-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 0.56 0.18 1 Ethylbenzene ND ug/kg 1.1 <td< td=""><td>Carbon tetrachloride</td><td>ND</td><td></td><td>ug/kg</td><td>1.1</td><td>0.26</td><td>1</td></td<>	Carbon tetrachloride	ND		ug/kg	1.1	0.26	1
1,1,2-Trichloroethane ND ug/kg 1.1 0.30 1 Tetrachloroethene ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.14 1 Trichlorofluoromethane ND ug/kg 4.5 0.78 1 1,2-Dichloroethane ND ug/kg 1.1 0.29 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 Bromofichloropropene ND ug/kg 1.1 0.30 1 cis-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 1.1 0.61 1 Toluene ND ug/kg 1.1 0.61 <td>1,2-Dichloropropane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.1</td> <td>0.14</td> <td>1</td>	1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1
Tetrachloroethene ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.14 1 Trichlorofluoromethane ND ug/kg 4.5 0.78 1 1,2-Dichloroethane ND ug/kg 1.1 0.29 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 Bromodichloropropene ND ug/kg 0.56 0.12 1 Bromoform ND ug/kg 0.56 0.12 1 Bromoform ND ug/kg 0.56 0.18 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 4.5 1.0 1	Dibromochloromethane	ND		ug/kg	1.1	0.16	1
Chlorobenzene ND ug/kg 0.56 0.14 1 Trichlorofluoromethane ND ug/kg 4.5 0.78 1 1,2-Dichloroethane ND ug/kg 1.1 0.29 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 Bromodichloropropene ND ug/kg 0.56 0.12 1 trans-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 4.5 1.0	1,1,2-Trichloroethane	ND		ug/kg	1.1	0.30	1
Trichloroffluoromethane ND ug/kg 4.5 0.78 1 1,2-Dichloroethane ND ug/kg 1.1 0.29 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 Bromodichloropropene ND ug/kg 1.1 0.30 1 cis-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 0.56 0.18 1 Ethylbenzene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 4.5 1.0 1 Chloromethane ND ug/kg 2.2 0.65	Tetrachloroethene	ND		ug/kg	0.56	0.22	1
1,2-Dichloroethane ND ug/kg 1.1 0.29 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 Bromodichloropropene ND ug/kg 1.1 0.30 1 cis-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.1 0.61 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.1 0.16 1 1,1,1,2,2-Tetrachloroethane ND <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.56</td> <td>0.14</td> <td>1</td>	Chlorobenzene	ND		ug/kg	0.56	0.14	1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/kg	4.5	0.78	1
Bromodichloromethane ND ug/kg 0.56 0.12 1 trans-1,3-Dichloropropene ND ug/kg 1.1 0.30 1 cis-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 1.1 0.16 1 Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 2.2 0.65 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 <td>1,2-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.1</td> <td>0.29</td> <td>1</td>	1,2-Dichloroethane	ND		ug/kg	1.1	0.29	1
trans-1,3-Dichloropropene ND ug/kg 1.1 0.30 1 cis-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 1.1 0.16 1 Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 1,1-Dichloroethene ND ug/kg 1.7 0.15 1	1,1,1-Trichloroethane	ND		ug/kg	0.56	0.19	1
cis-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 0.56 0.18 1 Ethylbenzene ND ug/kg 1.1 0.61 1 Chloromethane ND ug/kg 1.1 0.16 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1 </td <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.56</td> <td>0.12</td> <td>1</td>	Bromodichloromethane	ND		ug/kg	0.56	0.12	1
Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 1.1 0.16 1 Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.30	1
1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 1.1 0.16 1 Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	cis-1,3-Dichloropropene	ND		ug/kg	0.56	0.18	1
Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 1.1 0.16 1 Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Bromoform	ND		ug/kg	4.5	0.28	1
Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 1.1 0.16 1 Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	0.56	0.18	1
Ethylbenzene ND ug/kg 1.1 0.16 1 Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Benzene	ND		ug/kg	0.56	0.18	1
Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Toluene	ND		ug/kg	1.1	0.61	1
Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Ethylbenzene	ND		ug/kg	1.1	0.16	1
Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Chloromethane	ND		ug/kg	4.5	1.0	1
Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Bromomethane	ND		ug/kg	2.2	0.65	1
1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Vinyl chloride	ND		ug/kg	1.1	0.38	1
trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Chloroethane	ND		ug/kg	2.2	0.51	1
Trichloroethene ND ug/kg 0.56 0.15 1	1,1-Dichloroethene	ND		ug/kg	1.1	0.27	1
• • • • • • • • • • • • • • • • • • • •	trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.15	1
1,2-Dichlorobenzene ND ug/kg 2.2 0.16 1	Trichloroethene	ND		ug/kg	0.56	0.15	1
	1,2-Dichlorobenzene	ND		ug/kg	2.2	0.16	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-02 Date Collected: 12/30/24 11:11

Client ID: Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	2.2	0.16	1	
1,4-Dichlorobenzene	ND		ug/kg	2.2	0.19	1	
Methyl tert butyl ether	ND		ug/kg	2.2	0.22	1	
p/m-Xylene	ND		ug/kg	2.2	0.63	1	
o-Xylene	ND		ug/kg	1.1	0.32	1	
Xylenes, Total	ND		ug/kg	1.1	0.32	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.20	1	
Styrene	ND		ug/kg	1.1	0.22	1	
Dichlorodifluoromethane	ND		ug/kg	11	1.0	1	
Acetone	ND		ug/kg	11	5.4	1	
Carbon disulfide	ND		ug/kg	11	5.1	1	
2-Butanone	ND		ug/kg	11	2.5	1	
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1	
2-Hexanone	ND		ug/kg	11	1.3	1	
Bromochloromethane	ND		ug/kg	2.2	0.23	1	
1,2-Dibromoethane	ND		ug/kg	1.1	0.31	1	
n-Butylbenzene	ND		ug/kg	1.1	0.19	1	
sec-Butylbenzene	ND		ug/kg	1.1	0.16	1	
tert-Butylbenzene	ND		ug/kg	2.2	0.13	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.4	1.1	1	
Isopropylbenzene	ND		ug/kg	1.1	0.12	1	
p-Isopropyltoluene	ND		ug/kg	1.1	0.12	1	
n-Propylbenzene	ND		ug/kg	1.1	0.19	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.2	0.36	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.2	0.30	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.2	0.22	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.2	0.37	1	
Methyl Acetate	ND		ug/kg	4.5	1.1	1	
Cyclohexane	ND		ug/kg	11	0.61	1	
Freon-113	ND		ug/kg	4.5	0.78	1	
Methyl cyclohexane	ND		ug/kg	4.5	0.68	1	

Project Name: 52-54 CANAL ST LYONS **Lab Number:** L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-02 Date Collected: 12/30/24 11:11

Client ID: FD-01 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by EPA 5035 Low - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	114	70-130	

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

SAMPLE RESULTS

Date Collected: 12/30/24 10:30

Report Date:

Lab Number:

01/27/25

L2476426

Lab ID: L2476426-03

Client ID: ESW-03

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK

Date Received: 12/30/24
Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260D
Analytical Date: 01/05/25 20:40

Analyst: JIC Percent Solids: 98%

1,1-Dichloroethane ND ug/kg 1,2 0.18 1 Chloroform ND ug/kg 1.8 0.17 1 Carbon tetrachloride ND ug/kg 1.2 0.28 1 1,2-Dichloropropane ND ug/kg 1.2 0.15 1 Dibromochloromethane ND ug/kg 1.2 0.17 1 1,1,2-Trichloroethane ND ug/kg 1.2 0.33 1 Tetrachloroethane ND ug/kg 0.62 0.24 1 Chlorobenzene ND ug/kg 0.62 0.16 1 Trichloroethane ND ug/kg 4.9 0.86 1 1,2-Dichloroethane ND ug/kg 4.9 0.86 1 1,2-Dichloroethane ND ug/kg 0.62 0.13 1 Bromodichloromethane ND ug/kg 0.62 0.13 1 trans-1,3-Dichloropropene ND ug/kg 0.62 <t< th=""><th>Parameter</th><th>Result</th><th>Qualifier</th><th>Units</th><th>RL</th><th>MDL</th><th>Dilution Factor</th></t<>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/kg 1,2 0.18 1 Chloroform ND ug/kg 1.8 0.17 1 Carbon tetrachloride ND ug/kg 1.2 0.28 1 1,2-Dichloropropane ND ug/kg 1.2 0.15 1 Dibromochloromethane ND ug/kg 1.2 0.17 1 1,1,2-Trichloroethane ND ug/kg 1.2 0.33 1 Tetrachloroethane ND ug/kg 0.62 0.24 1 Chlorobenzene ND ug/kg 0.62 0.16 1 Trichlorofuloromethane ND ug/kg 4.9 0.86 1 1,2-Dichloroethane ND ug/kg 4.9 0.86 1 1,2-Dichloroethane ND ug/kg 0.62 0.13 1 Bromodichloromethane ND ug/kg 0.62 0.13 1 Bromodichloromethane ND ug/kg 0.62	Volatile Organics by EPA 5035 Low -	Westborough Lab					
Chloroform ND ug/kg 1.8 0.17 1 Carbon tetrachloride ND ug/kg 1.2 0.28 1 1,2-Dichloropropane ND ug/kg 1.2 0.15 1 Dibromochloromethane ND ug/kg 1.2 0.17 1 1,1,2-Trichloroethane ND ug/kg 1.2 0.33 1 Tetrachloroethane ND ug/kg 0.62 0.24 1 Chlorobenzene ND ug/kg 0.62 0.16 1 Trichlorofultoromethane ND ug/kg 4.9 0.86 1 1,2-Dichloroethane ND ug/kg 0.62 0.20 1 Bromodichloromethane ND ug/kg 0.62 0.20 1 Bromoform ND ug/kg 0.62 0.13 1 trans-1,3-Dichloropropene ND ug/kg 0.62 0.19 1 Bromoform ND ug/kg 0.62 0.20 </td <td>Methylene chloride</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>6.2</td> <td>2.8</td> <td>1</td>	Methylene chloride	ND		ug/kg	6.2	2.8	1
Carbon tetrachloride ND ug/kg 1.2 0.28 1 1,2-Dichloropropane ND ug/kg 1.2 0.15 1 Dibromochloromethane ND ug/kg 1.2 0.17 1 1,1,2-Trichloroethane ND ug/kg 1.2 0.33 1 Tetrachloroethane ND ug/kg 0.62 0.24 1 Chlorobenzene ND ug/kg 0.62 0.16 1 Trichlorofluoromethane ND ug/kg 4.9 0.86 1 1,2-Dichloroethane ND ug/kg 4.9 0.86 1 1,1,1-Trichloroethane ND ug/kg 0.62 0.20 1 Bromodichloromethane ND ug/kg 0.62 0.20 1 Bromodichloromethane ND ug/kg 0.62 0.13 1 trans-1,3-Dichloropropene ND ug/kg 0.62 0.13 1 bromodichloromethane ND ug/kg	1,1-Dichloroethane	ND		ug/kg	1.2	0.18	1
1,2-Dichloropropane ND	Chloroform	ND		ug/kg	1.8	0.17	1
Dibromochloromethane ND ug/kg 1.2 0.17 1 1,1,2-Trichloroethane ND ug/kg 1.2 0.33 1 Tetrachloroethane ND ug/kg 0.62 0.24 1 Chlorobenzene ND ug/kg 0.62 0.16 1 Trichlorofluoromethane ND ug/kg 4.9 0.86 1 1,2-Dichloroethane ND ug/kg 1.2 0.32 1 1,1,1-Trichloroethane ND ug/kg 0.62 0.20 1 Bromodichloromethane ND ug/kg 0.62 0.20 1 Bromodichloropropene ND ug/kg 0.62 0.13 1 trans-1,3-Dichloropropene ND ug/kg 0.62 0.19 1 Bromoform ND ug/kg 0.62 0.19 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.62 0.20 1 Toluene ND ug/kg 1.2	Carbon tetrachloride	ND		ug/kg	1.2	0.28	1
1,1,2-Trichloroethane ND ug/kg 1.2 0.33 1 Tetrachloroethene ND ug/kg 0.62 0.24 1 Chlorobenzene ND ug/kg 0.62 0.16 1 Trichlorofluoromethane ND ug/kg 4.9 0.86 1 1,2-Dichloroethane ND ug/kg 1.2 0.32 1 1,1,1-Trichloroethane ND ug/kg 0.62 0.20 1 Bromodichloromethane ND ug/kg 0.62 0.13 1 trans-1,3-Dichloropropene ND ug/kg 0.62 0.13 1 trans-1,3-Dichloropropene ND ug/kg 0.62 0.19 1 Bromoform ND ug/kg 4.9 0.30 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.62 0.20 1 Benzene ND ug/kg 0.62 0.20 1 Toluene ND ug/kg 1.2 <td< td=""><td>1,2-Dichloropropane</td><td>ND</td><td></td><td>ug/kg</td><td>1.2</td><td>0.15</td><td>1</td></td<>	1,2-Dichloropropane	ND		ug/kg	1.2	0.15	1
Tetrachloroethene ND ug/kg 0.62 0.24 1 Chlorobenzene ND ug/kg 0.62 0.16 1 Trichlorofluoromethane ND ug/kg 4.9 0.86 1 1,2-Dichloroethane ND ug/kg 1.2 0.32 1 1,1,1-Trichloroethane ND ug/kg 0.62 0.20 1 Bromodichloromethane ND ug/kg 0.62 0.13 1 Itrans-1,3-Dichloropropene ND ug/kg 0.62 0.13 1 Bromoform ND ug/kg 0.62 0.19 1 Bromoform ND ug/kg 0.62 0.19 1 Bromoform ND ug/kg 0.62 0.20 1 Benzene ND ug/kg 0.62 0.20 1 Toluene ND ug/kg 1.2 0.67 1 Ethylbenzene ND ug/kg 1.2 0.17 1	Dibromochloromethane	ND		ug/kg	1.2	0.17	1
Chlorobenzene ND ug/kg 0.62 0.16 1 Trichlorofluoromethane ND ug/kg 4.9 0.86 1 1,2-Dichloroethane ND ug/kg 1.2 0.32 1 1,1,1-Trichloroethane ND ug/kg 0.62 0.20 1 Bromodichloromethane ND ug/kg 0.62 0.13 1 Bromodichloropropene ND ug/kg 1.2 0.34 1 cis-1,3-Dichloropropene ND ug/kg 0.62 0.19 1 Bromoform ND ug/kg 4.9 0.30 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.62 0.20 1 Benzene ND ug/kg 0.62 0.20 1 Toluene ND ug/kg 1.2 0.67 1 Ethylbenzene ND ug/kg 4.9 1.1 1 Chloromethane ND ug/kg 2.5 0.71	1,1,2-Trichloroethane	ND		ug/kg	1.2	0.33	1
Trichlorofluoromethane ND ug/kg 4.9 0.86 1 1,2-Dichloroethane ND ug/kg 1.2 0.32 1 1,1,1-Trichloroethane ND ug/kg 0.62 0.20 1 Bromodichloromethane ND ug/kg 0.62 0.13 1 Bromodichloropropene ND ug/kg 1.2 0.34 1 cis-1,3-Dichloropropene ND ug/kg 0.62 0.19 1 Bromoform ND ug/kg 4.9 0.30 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.62 0.20 1 Benzene ND ug/kg 0.62 0.20 1 Toluene ND ug/kg 1.2 0.67 1 Ethylbenzene ND ug/kg 1.2 0.17 1 Chloromethane ND ug/kg 2.5 0.71 1 Vinyl chloride ND ug/kg 2.5 0.56 <td< td=""><td>Tetrachloroethene</td><td>ND</td><td></td><td>ug/kg</td><td>0.62</td><td>0.24</td><td>1</td></td<>	Tetrachloroethene	ND		ug/kg	0.62	0.24	1
1,2-Dichloroethane ND ug/kg 1.2 0.32 1 1,1,1-Trichloroethane ND ug/kg 0.62 0.20 1 Bromodichloromethane ND ug/kg 0.62 0.13 1 Bromodichloropropene ND ug/kg 1.2 0.34 1 cis-1,3-Dichloropropene ND ug/kg 0.62 0.19 1 Bromoform ND ug/kg 4.9 0.30 1 Bromoform ND ug/kg 0.62 0.20 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.2 0.67 1 1,1,1-Dichoroethane ND ug/kg 1.2 0.67 1 1,1-Dichloroethane ND ug/kg	Chlorobenzene	ND		ug/kg	0.62	0.16	1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/kg	4.9	0.86	1
Bromodichloromethane ND ug/kg 0.62 0.13 1 ttrans-1,3-Dichloropropene ND ug/kg 1.2 0.34 1 cis-1,3-Dichloropropene ND ug/kg 0.62 0.19 1 Bromoform ND ug/kg 4.9 0.30 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.62 0.20 1 Benzene ND ug/kg 0.62 0.20 1 Toluene ND ug/kg 1.2 0.67 1 Ethylbenzene ND ug/kg 1.2 0.17 1 Chloromethane ND ug/kg 4.9 1.1 1 Bromomethane ND ug/kg 2.5 0.71 1 Vinyl chloride ND ug/kg 2.5 0.56 1 Chloroethane ND ug/kg 1.2 0.29 1 1,1-Dichloroethene ND ug/kg 1.8 0.17 1 <td>1,2-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.2</td> <td>0.32</td> <td>1</td>	1,2-Dichloroethane	ND		ug/kg	1.2	0.32	1
trans-1,3-Dichloropropene ND ug/kg 1.2 0.34 1 cis-1,3-Dichloropropene ND ug/kg 0.62 0.19 1 Bromoform ND ug/kg 4.9 0.30 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.62 0.20 1 Benzene ND ug/kg 0.62 0.20 1 Toluene ND ug/kg 1.2 0.67 1 Ethylbenzene ND ug/kg 1.2 0.17 1 Chloromethane ND ug/kg 4.9 1.1 1 Bromomethane ND ug/kg 2.5 0.71 1 Vinyl chloride ND ug/kg 1.2 0.41 1 Chloroethane ND ug/kg 2.5 0.56 1 1,1-Dichloroethene ND ug/kg 1.2 0.29 1 trans-1,2-Dichloroethene ND ug/kg 0.62 0.17 1	1,1,1-Trichloroethane	ND		ug/kg	0.62	0.20	1
cis-1,3-Dichloropropene ND ug/kg 0.62 0.19 1 Bromoform ND ug/kg 4.9 0.30 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.62 0.20 1 Benzene ND ug/kg 0.62 0.20 1 Toluene ND ug/kg 1.2 0.67 1 Ethylbenzene ND ug/kg 1.2 0.17 1 Chloromethane ND ug/kg 4.9 1.1 1 Bromomethane ND ug/kg 2.5 0.71 1 Vinyl chloride ND ug/kg 1.2 0.41 1 Chloroethane ND ug/kg 2.5 0.56 1 1,1-Dichloroethene ND ug/kg 1.2 0.29 1 trans-1,2-Dichloroethene ND ug/kg 1.8 0.17 1 Trichloroethene ND ug/kg 0.62 0.17 1 <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.62</td> <td>0.13</td> <td>1</td>	Bromodichloromethane	ND		ug/kg	0.62	0.13	1
Bromoform ND ug/kg 4.9 0.30 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.62 0.20 1 Benzene ND ug/kg 0.62 0.20 1 Toluene ND ug/kg 1.2 0.67 1 Ethylbenzene ND ug/kg 1.2 0.17 1 Chloromethane ND ug/kg 4.9 1.1 1 Bromomethane ND ug/kg 2.5 0.71 1 Vinyl chloride ND ug/kg 1.2 0.41 1 Chloroethane ND ug/kg 2.5 0.56 1 1,1-Dichloroethene ND ug/kg 1.2 0.29 1 trans-1,2-Dichloroethene ND ug/kg 1.8 0.17 1 Trichloroethene ND ug/kg 0.62 0.17 1	trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.34	1
1,1,2,2-Tetrachloroethane ND ug/kg 0.62 0.20 1 Benzene ND ug/kg 0.62 0.20 1 Toluene ND ug/kg 1.2 0.67 1 Ethylbenzene ND ug/kg 1.2 0.17 1 Chloromethane ND ug/kg 4.9 1.1 1 Bromomethane ND ug/kg 2.5 0.71 1 Vinyl chloride ND ug/kg 1.2 0.41 1 Chloroethane ND ug/kg 2.5 0.56 1 1,1-Dichloroethene ND ug/kg 1.2 0.29 1 trans-1,2-Dichloroethene ND ug/kg 1.8 0.17 1 Trichloroethene ND ug/kg 0.62 0.17 1	cis-1,3-Dichloropropene	ND		ug/kg	0.62	0.19	1
Benzene ND ug/kg 0.62 0.20 1 Toluene ND ug/kg 1.2 0.67 1 Ethylbenzene ND ug/kg 1.2 0.17 1 Chloromethane ND ug/kg 4.9 1.1 1 Bromomethane ND ug/kg 2.5 0.71 1 Vinyl chloride ND ug/kg 1.2 0.41 1 Chloroethane ND ug/kg 2.5 0.56 1 1,1-Dichloroethene ND ug/kg 1.2 0.29 1 trans-1,2-Dichloroethene ND ug/kg 1.8 0.17 1 Trichloroethene ND ug/kg 0.62 0.17 1	Bromoform	ND		ug/kg	4.9	0.30	1
Toluene ND ug/kg 1.2 0.67 1 Ethylbenzene ND ug/kg 1.2 0.17 1 Chloromethane ND ug/kg 4.9 1.1 1 Bromomethane ND ug/kg 2.5 0.71 1 Vinyl chloride ND ug/kg 1.2 0.41 1 Chloroethane ND ug/kg 2.5 0.56 1 1,1-Dichloroethene ND ug/kg 1.2 0.29 1 trans-1,2-Dichloroethene ND ug/kg 1.8 0.17 1 Trichloroethene ND ug/kg 0.62 0.17 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	0.62	0.20	1
Ethylbenzene ND ug/kg 1.2 0.17 1 Chloromethane ND ug/kg 4.9 1.1 1 Bromomethane ND ug/kg 2.5 0.71 1 Vinyl chloride ND ug/kg 1.2 0.41 1 Chloroethane ND ug/kg 2.5 0.56 1 1,1-Dichloroethene ND ug/kg 1.2 0.29 1 trans-1,2-Dichloroethene ND ug/kg 1.8 0.17 1 Trichloroethene ND ug/kg 0.62 0.17 1	Benzene	ND		ug/kg	0.62	0.20	1
Chloromethane ND ug/kg 4.9 1.1 1 Bromomethane ND ug/kg 2.5 0.71 1 Vinyl chloride ND ug/kg 1.2 0.41 1 Chloroethane ND ug/kg 2.5 0.56 1 1,1-Dichloroethene ND ug/kg 1.2 0.29 1 trans-1,2-Dichloroethene ND ug/kg 1.8 0.17 1 Trichloroethene ND ug/kg 0.62 0.17 1	Toluene	ND		ug/kg	1.2	0.67	1
Bromomethane ND ug/kg 2.5 0.71 1 Vinyl chloride ND ug/kg 1.2 0.41 1 Chloroethane ND ug/kg 2.5 0.56 1 1,1-Dichloroethene ND ug/kg 1.2 0.29 1 trans-1,2-Dichloroethene ND ug/kg 1.8 0.17 1 Trichloroethene ND ug/kg 0.62 0.17 1	Ethylbenzene	ND		ug/kg	1.2	0.17	1
Vinyl chloride ND ug/kg 1.2 0.41 1 Chloroethane ND ug/kg 2.5 0.56 1 1,1-Dichloroethene ND ug/kg 1.2 0.29 1 trans-1,2-Dichloroethene ND ug/kg 1.8 0.17 1 Trichloroethene ND ug/kg 0.62 0.17 1	Chloromethane	ND		ug/kg	4.9	1.1	1
Chloroethane ND ug/kg 2.5 0.56 1 1,1-Dichloroethene ND ug/kg 1.2 0.29 1 trans-1,2-Dichloroethene ND ug/kg 1.8 0.17 1 Trichloroethene ND ug/kg 0.62 0.17 1	Bromomethane	ND		ug/kg	2.5	0.71	1
1,1-Dichloroethene ND ug/kg 1.2 0.29 1 trans-1,2-Dichloroethene ND ug/kg 1.8 0.17 1 Trichloroethene ND ug/kg 0.62 0.17 1	Vinyl chloride	ND		ug/kg	1.2	0.41	1
trans-1,2-Dichloroethene ND ug/kg 1.8 0.17 1 Trichloroethene ND ug/kg 0.62 0.17 1	Chloroethane	ND		ug/kg	2.5	0.56	1
Trichloroethene ND ug/kg 0.62 0.17 1	1,1-Dichloroethene	ND		ug/kg	1.2	0.29	1
· ·	trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.17	1
1,2-Dichlorobenzene ND ug/kg 2.5 0.18 1	Trichloroethene	ND		ug/kg	0.62	0.17	1
	1,2-Dichlorobenzene	ND		ug/kg	2.5	0.18	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-03 Date Collected: 12/30/24 10:30

Client ID: ESW-03 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/kg	2.5	0.18	1
1.4-Dichlorobenzene	ND		ug/kg	2.5	0.21	
Methyl tert butyl ether	ND		ug/kg	2.5	0.25	 1
p/m-Xylene	ND		ug/kg	2.5	0.69	 1
o-Xylene	ND		ug/kg	1.2	0.36	 1
Xylenes, Total	ND		ug/kg	1.2	0.36	 1
cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.22	
Styrene	ND		ug/kg	1.2	0.24	 1
Dichlorodifluoromethane	ND		ug/kg	12	1.1	 1
Acetone	ND		ug/kg	12	5.9	1
Carbon disulfide	ND		ug/kg	12	5.6	1
2-Butanone	ND		ug/kg	12	2.7	1
4-Methyl-2-pentanone	ND		ug/kg	12	1.6	1
2-Hexanone	ND		ug/kg	12	1.4	1
Bromochloromethane	ND		ug/kg	2.5	0.25	1
1,2-Dibromoethane	ND		ug/kg	1.2	0.34	1
n-Butylbenzene	ND		ug/kg	1.2	0.20	1
sec-Butylbenzene	ND		ug/kg	1.2	0.18	1
tert-Butylbenzene	ND		ug/kg	2.5	0.14	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.7	1.2	1
Isopropylbenzene	ND		ug/kg	1.2	0.13	1
p-Isopropyltoluene	ND		ug/kg	1.2	0.13	1
n-Propylbenzene	ND		ug/kg	1.2	0.21	1
1,2,3-Trichlorobenzene	ND		ug/kg	2.5	0.40	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.5	0.33	1
1,3,5-Trimethylbenzene	ND		ug/kg	2.5	0.24	1
1,2,4-Trimethylbenzene	ND		ug/kg	2.5	0.41	1
Methyl Acetate	ND		ug/kg	4.9	1.2	1
Cyclohexane	ND		ug/kg	12	0.67	1
Freon-113	ND		ug/kg	4.9	0.85	1
Methyl cyclohexane	ND		ug/kg	4.9	0.74	1

Project Name: 52-54 CANAL ST LYONS **Lab Number:** L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

LE RESULTS

Lab ID: L2476426-03 Date Collected: 12/30/24 10:30

Client ID: ESW-03 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by EPA 5035 Low - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	112	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	97	70-130
Dibromofluoromethane	113	70-130

L2476426

01/27/25

Project Name: 52-54 CANAL ST LYONS

L2476426-04

Project Number: 037112

Lab ID:

SAMPLE RESULTS

Date Collected: 12/30/24 10:35

Lab Number:

Report Date:

AWIF LE RESOLTS

Client ID: ESW-04 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260D
Analytical Date: 01/05/25 20:14

Analyst: JIC Percent Solids: 91%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low -	Westborough Lab					
Methylene chloride	ND		ug/kg	5.4	2.5	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
Chloroform	ND		ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.1	0.25	1
1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1
Dibromochloromethane	ND		ug/kg	1.1	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.29	1
Tetrachloroethene	ND		ug/kg	0.54	0.21	1
Chlorobenzene	ND		ug/kg	0.54	0.14	1
Trichlorofluoromethane	ND		ug/kg	4.4	0.76	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.28	1
1,1,1-Trichloroethane	ND		ug/kg	0.54	0.18	1
Bromodichloromethane	ND		ug/kg	0.54	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.30	1
cis-1,3-Dichloropropene	ND		ug/kg	0.54	0.17	1
Bromoform	ND		ug/kg	4.4	0.27	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.54	0.18	1
Benzene	ND		ug/kg	0.54	0.18	1
Toluene	ND		ug/kg	1.1	0.59	1
Ethylbenzene	ND		ug/kg	1.1	0.15	1
Chloromethane	ND		ug/kg	4.4	1.0	1
Bromomethane	ND		ug/kg	2.2	0.63	1
Vinyl chloride	ND		ug/kg	1.1	0.36	1
Chloroethane	ND		ug/kg	2.2	0.49	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.26	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.15	1
Trichloroethene	ND		ug/kg	0.54	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	2.2	0.16	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-04 Date Collected: 12/30/24 10:35

Client ID: ESW-04 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	2.2	0.16	1	
1,4-Dichlorobenzene	ND		ug/kg	2.2	0.19	1	
Methyl tert butyl ether	ND		ug/kg	2.2	0.22	1	
p/m-Xylene	ND		ug/kg	2.2	0.61	1	
o-Xylene	ND		ug/kg	1.1	0.32	1	
Xylenes, Total	ND		ug/kg	1.1	0.32	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.19	1	
Styrene	ND		ug/kg	1.1	0.21	1	
Dichlorodifluoromethane	ND		ug/kg	11	1.0	1	
Acetone	ND		ug/kg	11	5.2	1	
Carbon disulfide	ND		ug/kg	11	5.0	1	
2-Butanone	ND		ug/kg	11	2.4	1	
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1	
2-Hexanone	ND		ug/kg	11	1.3	1	
Bromochloromethane	ND		ug/kg	2.2	0.22	1	
1,2-Dibromoethane	ND		ug/kg	1.1	0.30	1	
n-Butylbenzene	ND		ug/kg	1.1	0.18	1	
sec-Butylbenzene	ND		ug/kg	1.1	0.16	1	
tert-Butylbenzene	ND		ug/kg	2.2	0.13	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.3	1.1	1	
Isopropylbenzene	ND		ug/kg	1.1	0.12	1	
p-Isopropyltoluene	0.77	J	ug/kg	1.1	0.12	1	
n-Propylbenzene	ND		ug/kg	1.1	0.19	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.2	0.35	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.2	0.30	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.2	0.21	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.2	0.36	1	
Methyl Acetate	ND		ug/kg	4.4	1.0	1	
Cyclohexane	ND		ug/kg	11	0.59	1	
Freon-113	ND		ug/kg	4.4	0.76	1	
Methyl cyclohexane	ND		ug/kg	4.4	0.66	1	

Project Name: 52-54 CANAL ST LYONS **Lab Number:** L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-04 Date Collected: 12/30/24 10:35

Client ID: ESW-04 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by EPA 5035 Low - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	107	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	93	70-130
Dibromofluoromethane	112	70-130

L2476426

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

SAMPLE RESULTS

Report Date: 01/27/25

Lab Number:

Lab ID: L2476426-05 Date Collected: 12/30/24 08:30

Date Received: Client ID: **EQUIPMENT BLANK** 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 12/31/24 13:35

Analyst: **RAW**

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-05 Date Collected: 12/30/24 08:30

Client ID: EQUIPMENT BLANK Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbor	ough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Project Name: 52-54 CANAL ST LYONS **Lab Number:** L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-05 Date Collected: 12/30/24 08:30

Client ID: EQUIPMENT BLANK Date Received: 12/30/24
Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	86	70-130	
Dibromofluoromethane	112	70-130	

Project Number: 037112 Report Date: 01/27/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/31/24 09:08

Analyst: PID

arameter	Result	Qualifier Units	RL.	MDL
olatile Organics by GC/MS - V	Vestborough Lab	o for sample(s):	05 Batch:	WG2015394-5
Methylene chloride	ND	ug/	2.5	0.70
1,1-Dichloroethane	ND	ug/	2.5	0.70
Chloroform	ND	ug/	2.5	0.70
Carbon tetrachloride	ND	ug/	0.50	0.13
1,2-Dichloropropane	ND	ug/	1.0	0.14
Dibromochloromethane	ND	ug/	0.50	0.15
1,1,2-Trichloroethane	ND	ug/	1.5	0.50
Tetrachloroethene	ND	ug/	0.50	0.18
Chlorobenzene	ND	ug/	2.5	0.70
Trichlorofluoromethane	ND	ug/	2.5	0.70
1,2-Dichloroethane	ND	ug/	0.50	0.13
1,1,1-Trichloroethane	ND	ug/	2.5	0.70
Bromodichloromethane	ND	ug/	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/	0.50	0.14
Bromoform	ND	ug/	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/	0.50	0.17
Benzene	ND	ug/	0.50	0.16
Toluene	ND	ug/	2.5	0.70
Ethylbenzene	ND	ug/	2.5	0.70
Chloromethane	ND	ug/	2.5	0.70
Bromomethane	ND	ug/	2.5	0.70
Vinyl chloride	ND	ug/	1.0	0.07
Chloroethane	ND	ug/	2.5	0.70
1,1-Dichloroethene	ND	ug/	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/	2.5	0.70
Trichloroethene	ND	ug/	0.50	0.18
1,2-Dichlorobenzene	ND	ug/	2.5	0.70
1,3-Dichlorobenzene	ND	ug/	2.5	0.70

Project Number: 037112 Report Date: 01/27/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/31/24 09:08

Analyst: PID

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	05 Batch:	WG2015394-5
1,4-Dichlorobenzene	ND	ug/	1 2.5	0.70
Methyl tert butyl ether	ND	ug/	2.5	0.17
p/m-Xylene	ND	ug/	2.5	0.70
o-Xylene	ND	ug/	2.5	0.70
Xylenes, Total	ND	ug/	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/	2.5	0.70
Styrene	ND	ug/	2.5	0.70
Dichlorodifluoromethane	ND	ug/	5.0	1.0
Acetone	ND	ug/	5.0	1.5
Carbon disulfide	ND	ug/	5.0	1.0
2-Butanone	ND	ug/	5.0	1.9
4-Methyl-2-pentanone	ND	ug/	5.0	1.0
2-Hexanone	ND	ug/	5.0	1.0
Bromochloromethane	ND	ug/	2.5	0.70
1,2-Dibromoethane	ND	ug/	2.0	0.65
n-Butylbenzene	ND	ug/	2.5	0.70
sec-Butylbenzene	ND	ug/	2.5	0.70
tert-Butylbenzene	ND	ug/	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/	2.5	0.70
Isopropylbenzene	ND	ug/	2.5	0.70
p-Isopropyltoluene	ND	ug/	2.5	0.70
n-Propylbenzene	ND	ug/	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/	2.5	0.70
Methyl Acetate	ND	ug/	2.0	0.23
Cyclohexane	ND	ug/	10	0.27
1,4-Dioxane	ND	ug/	I 250	61.

Project Number: 037112 Report Date: 01/27/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/31/24 09:08

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - \	Westborough Lab	for sampl	e(s): 05	Batch:	WG2015394-5	
Freon-113	ND		ug/l	2.5	0.70	
Methyl cyclohexane	ND		ug/l	10	0.40	

	Acceptance					
Surrogate	%Recovery Qualific	er Criteria				
1,2-Dichloroethane-d4	109	70-130				
Toluene-d8	100	70-130				
4-Bromofluorobenzene	88	70-130				
Dibromofluoromethane	113	70-130				

Project Number: 037112 Report Date: 01/27/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/05/25 17:38

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	M	DL
olatile Organics by EPA 5035 Low	- Westboro	ugh Lab fo	r sample(s):	01-04	Batch:	WG2016848-5
Methylene chloride	ND		ug/kg	5.0	2	2.3
1,1-Dichloroethane	ND		ug/kg	1.0	0	.14
Chloroform	0.30	J	ug/kg	1.5	0	.14
Carbon tetrachloride	ND		ug/kg	1.0	0	.23
1,2-Dichloropropane	ND		ug/kg	1.0	0	.12
Dibromochloromethane	ND		ug/kg	1.0	0	.14
1,1,2-Trichloroethane	ND		ug/kg	1.0	0	.27
Tetrachloroethene	ND		ug/kg	0.50	0	.20
Chlorobenzene	ND		ug/kg	0.50	0	.13
Trichlorofluoromethane	ND		ug/kg	4.0	0	.70
1,2-Dichloroethane	ND		ug/kg	1.0	0	.26
1,1,1-Trichloroethane	ND		ug/kg	0.50	0	.17
Bromodichloromethane	ND		ug/kg	0.50	0	.11
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0	.27
cis-1,3-Dichloropropene	ND		ug/kg	0.50	0	.16
Bromoform	ND		ug/kg	4.0	0	.25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50	0	.17
Benzene	ND		ug/kg	0.50	0	.17
Toluene	ND		ug/kg	1.0	0	.54
Ethylbenzene	ND		ug/kg	1.0	0	.14
Chloromethane	ND		ug/kg	4.0	0	.93
Bromomethane	ND		ug/kg	2.0	0	.58
Vinyl chloride	ND		ug/kg	1.0	0	.34
Chloroethane	ND		ug/kg	2.0	0	.45
1,1-Dichloroethene	ND		ug/kg	1.0	0	.24
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0	.14
Trichloroethene	ND		ug/kg	0.50	0	.14
1,2-Dichlorobenzene	ND		ug/kg	2.0	0	.14
1,3-Dichlorobenzene	ND		ug/kg	2.0	0	.15

Project Number: 037112 Report Date: 01/27/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/05/25 17:38

Analyst: AJK

arameter	Result	Qualifier	Units	RL	М	DL
olatile Organics by EPA 5035	Low - Westbord	ough Lab for	sample(s):	01-04	Batch:	WG2016848-5
1,4-Dichlorobenzene	ND		ug/kg	2.0	C	.17
Methyl tert butyl ether	ND		ug/kg	2.0	C	.20
p/m-Xylene	ND		ug/kg	2.0	C	.56
o-Xylene	ND		ug/kg	1.0	C	.29
Xylenes, Total	ND		ug/kg	1.0	C	.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0	C	.18
Styrene	ND		ug/kg	1.0	C	.20
Dichlorodifluoromethane	ND		ug/kg	10	C	.92
Acetone	ND		ug/kg	10	•	4.8
Carbon disulfide	ND		ug/kg	10	•	4.6
2-Butanone	ND		ug/kg	10		2.2
4-Methyl-2-pentanone	ND		ug/kg	10		1.3
2-Hexanone	ND		ug/kg	10		1.2
Bromochloromethane	ND		ug/kg	2.0	C	.20
1,2-Dibromoethane	ND		ug/kg	1.0	C	.28
n-Butylbenzene	ND		ug/kg	1.0	C	.17
sec-Butylbenzene	ND		ug/kg	1.0	C	.15
tert-Butylbenzene	ND		ug/kg	2.0	C	.12
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0
Isopropylbenzene	ND		ug/kg	1.0	C).11
p-Isopropyltoluene	ND		ug/kg	1.0	C).11
n-Propylbenzene	ND		ug/kg	1.0	C	.17
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	C	.32
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	C	.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	C	.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	C	.33
Methyl Acetate	ND		ug/kg	4.0	C	.95
Cyclohexane	ND		ug/kg	10	C	.54
Freon-113	ND		ug/kg	4.0	C	.69

Project Number: 037112 Report Date: 01/27/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/05/25 17:38

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 Low	- Westboro	ugh Lab fo	r sample(s):	01-04	Batch: WG2016848-5
Methyl cyclohexane	ND		ug/kg	4.0	0.60

		A	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	105		70-130	

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number: L2476426

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - V	Vestborough Lab Associ	ated sample(s)	: 05 Batch:	WG20153	94-3 WG201539	94-4	
Methylene chloride	95		95		70-130	0	20
1,1-Dichloroethane	100		110		70-130	10	20
Chloroform	100		100		70-130	0	20
Carbon tetrachloride	94		97		63-132	3	20
1,2-Dichloropropane	100		100		70-130	0	20
Dibromochloromethane	95		93		63-130	2	20
1,1,2-Trichloroethane	94		92		70-130	2	20
Tetrachloroethene	110		110		70-130	0	20
Chlorobenzene	100		100		75-130	0	20
Trichlorofluoromethane	110		100		62-150	10	20
1,2-Dichloroethane	100		100		70-130	0	20
1,1,1-Trichloroethane	97		97		67-130	0	20
Bromodichloromethane	97		97		67-130	0	20
trans-1,3-Dichloropropene	97		96		70-130	1	20
cis-1,3-Dichloropropene	98		98		70-130	0	20
Bromoform	88		88		54-136	0	20
1,1,2,2-Tetrachloroethane	82		82		67-130	0	20
Benzene	100		99		70-130	1	20
Toluene	100		100		70-130	0	20
Ethylbenzene	100		100		70-130	0	20
Chloromethane	91		93		64-130	2	20
Bromomethane	140	Q	140	Q	39-139	0	20
Vinyl chloride	100		100		55-140	0	20

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number: L2476426

Parameter	LCS %Recovery	Qual %	LCSD &Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - W	estborough Lab Associa	ted sample(s):	05 Batch:	WG2015394-3 WG20153	394-4	
Chloroethane	130		130	55-138	0	20
1,1-Dichloroethene	98		95	61-145	3	20
trans-1,2-Dichloroethene	100		100	70-130	0	20
Trichloroethene	92		91	70-130	1	20
1,2-Dichlorobenzene	100		100	70-130	0	20
1,3-Dichlorobenzene	100		100	70-130	0	20
1,4-Dichlorobenzene	100		100	70-130	0	20
Methyl tert butyl ether	97		98	63-130	1	20
p/m-Xylene	100		100	70-130	0	20
o-Xylene	105		105	70-130	0	20
cis-1,2-Dichloroethene	100		100	70-130	0	20
Styrene	105		105	70-130	0	20
Dichlorodifluoromethane	98		98	36-147	0	20
Acetone	76		86	58-148	12	20
Carbon disulfide	100		100	51-130	0	20
2-Butanone	87		82	63-138	6	20
4-Methyl-2-pentanone	88		86	59-130	2	20
2-Hexanone	86		86	57-130	0	20
Bromochloromethane	97		93	70-130	4	20
1,2-Dibromoethane	95		96	70-130	1	20
n-Butylbenzene	100		100	53-136	0	20
sec-Butylbenzene	97		96	70-130	1	20
tert-Butylbenzene	94		94	70-130	0	20

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number: L2476426

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westboroug	h Lab Associat	ed sample(s):	: 05 Batch:	WG201539	94-3 WG201539	94-4		
1,2-Dibromo-3-chloropropane	80		79		41-144	1		20
Isopropylbenzene	95		94		70-130	1		20
p-Isopropyltoluene	98		98		70-130	0		20
n-Propylbenzene	92		92		69-130	0		20
1,2,3-Trichlorobenzene	90		94		70-130	4		20
1,2,4-Trichlorobenzene	95		98		70-130	3		20
1,3,5-Trimethylbenzene	90		89		64-130	1		20
1,2,4-Trimethylbenzene	95		95		70-130	0		20
Methyl Acetate	87		85		70-130	2		20
Cyclohexane	94		95		70-130	1		20
1,4-Dioxane	98		92		56-162	6		20
Freon-113	100		98		70-130	2		20
Methyl cyclohexane	92		92		70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	111	112	70-130
Toluene-d8	102	100	70-130
4-Bromofluorobenzene	91	90	70-130
Dibromofluoromethane	109	107	70-130

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number: L2476426

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - We	estborough Lab	Associated s	ample(s): 01-04	Batch:	WG2016848-3	WG2016848-	4
Methylene chloride	90		85		70-130	6	30
1,1-Dichloroethane	102		96		70-130	6	30
Chloroform	98		94		70-130	4	30
Carbon tetrachloride	115		111		70-130	4	30
1,2-Dichloropropane	97		93		70-130	4	30
Dibromochloromethane	104		101		70-130	3	30
1,1,2-Trichloroethane	93		90		70-130	3	30
Tetrachloroethene	105		100		70-130	5	30
Chlorobenzene	98		94		70-130	4	30
Trichlorofluoromethane	122		113		70-139	8	30
1,2-Dichloroethane	97		94		70-130	3	30
1,1,1-Trichloroethane	106		102		70-130	4	30
Bromodichloromethane	97		93		70-130	4	30
trans-1,3-Dichloropropene	96		91		70-130	5	30
cis-1,3-Dichloropropene	100		96		70-130	4	30
Bromoform	100		97		70-130	3	30
1,1,2,2-Tetrachloroethane	91		86		70-130	6	30
Benzene	94		90		70-130	4	30
Toluene	95		89		70-130	7	30
Ethylbenzene	95		90		70-130	5	30
Chloromethane	132	Q	120		52-130	10	30
Bromomethane	124		114		57-147	8	30
Vinyl chloride	110		101		67-130	9	30

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number: L2476426

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 Low - V	Vestborough Lab	Associated s	ample(s): 01-04	Batch:	WG2016848-3	WG2016848-	4
Chloroethane	108		98		50-151	10	30
1,1-Dichloroethene	109		102		65-135	7	30
trans-1,2-Dichloroethene	103		99		70-130	4	30
Trichloroethene	102		98		70-130	4	30
1,2-Dichlorobenzene	101		96		70-130	5	30
1,3-Dichlorobenzene	103		97		70-130	6	30
1,4-Dichlorobenzene	101		95		70-130	6	30
Methyl tert butyl ether	107		103		66-130	4	30
p/m-Xylene	99		95		70-130	4	30
o-Xylene	96		92		70-130	4	30
cis-1,2-Dichloroethene	101		95		70-130	6	30
Styrene	96		92		70-130	4	30
Dichlorodifluoromethane	116		106		30-146	9	30
Acetone	164	Q	153	Q	54-140	7	30
Carbon disulfide	106		100		59-130	6	30
2-Butanone	120		106		70-130	12	30
4-Methyl-2-pentanone	95		92		70-130	3	30
2-Hexanone	102		94		70-130	8	30
Bromochloromethane	105		100		70-130	5	30
1,2-Dibromoethane	100		97		70-130	3	30
n-Butylbenzene	105		98		70-130	7	30
sec-Butylbenzene	102		96		70-130	6	30
tert-Butylbenzene	105		97		70-130	8	30

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number: L247

L2476426

arameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by EPA 5035 Low -	Westborough Lab	Associated	sample(s): 01	-04 Batch:	WG2016848-3	WG2016848-	4		
1,2-Dibromo-3-chloropropane	86		85		68-130	1		30	
Isopropylbenzene	100		94		70-130	6		30	
p-Isopropyltoluene	108		100		70-130	8		30	
n-Propylbenzene	100		92		70-130	8		30	
1,2,3-Trichlorobenzene	104		97		70-130	7		30	
1,2,4-Trichlorobenzene	105		100		70-130	5		30	
1,3,5-Trimethylbenzene	99		92		70-130	7		30	
1,2,4-Trimethylbenzene	99		93		70-130	6		30	
Methyl Acetate	118		112		51-146	5		30	
Cyclohexane	120		112		59-142	7		30	
Freon-113	117		110		50-139	6		30	
Methyl cyclohexane	108		102		70-130	6		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qua	Acceptance Criteria
1,2-Dichloroethane-d4	100	100	70-130
Toluene-d8	100	99	70-130
4-Bromofluorobenzene	113	94	70-130
Dibromofluoromethane	106	106	70-130

SEMIVOLATILES

L2476426

01/27/25

Lab Number:

Report Date:

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

SAMPLE RESULTS

Lab ID: L2476426-01 Date Collected: 12/30/24 10:20

Date Received: Client ID: 12/30/24 EB-02

52-54 CANAL ST, LYONS, NEW YORK Sample Location: Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 01/02/25 16:45 Analytical Method: 1,8270E

Analytical Date: 01/03/25 12:10 Analyst: ΕK 97% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Acenaphthene	ND		ug/kg	130	17.	1	
Hexachlorobenzene	ND		ug/kg	100	19.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	150	23.	1	
2-Chloronaphthalene	ND		ug/kg	170	17.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	170	45.	1	
2,4-Dinitrotoluene	ND		ug/kg	170	34.	1	
2,6-Dinitrotoluene	ND		ug/kg	170	29.	1	
Fluoranthene	ND		ug/kg	100	19.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	170	18.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	170	26.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	200	29.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	180	17.	1	
Hexachlorobutadiene	ND		ug/kg	170	24.	1	
Hexachlorocyclopentadiene	ND		ug/kg	480	150	1	
Hexachloroethane	ND		ug/kg	130	27.	1	
Isophorone	ND		ug/kg	150	22.	1	
Naphthalene	ND		ug/kg	170	20.	1	
Nitrobenzene	ND		ug/kg	150	25.	1	
NDPA/DPA	ND		ug/kg	130	19.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	170	26.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	170	58.	1	
Butyl benzyl phthalate	ND		ug/kg	170	42.	1	
Di-n-butylphthalate	ND		ug/kg	170	32.	1	
Di-n-octylphthalate	ND		ug/kg	170	57.	1	
Diethyl phthalate	ND		ug/kg	170	16.	1	
Dimethyl phthalate	ND		ug/kg	170	35.	1	
Benzo(a)anthracene	ND		ug/kg	100	19.	1	
Benzo(a)pyrene	ND		ug/kg	130	41.	1	

L2476426

Lab Number:

Project Name: 52-54 CANAL ST LYONS

Project Number: Report Date: 037112 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-01 Date Collected: 12/30/24 10:20

Client ID: Date Received: 12/30/24 EB-02

Sample Location: Field Prep: Not Specified 52-54 CANAL ST, LYONS, NEW YORK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Benzo(b)fluoranthene	ND		ug/kg	100	28.	1
Benzo(k)fluoranthene	ND		ug/kg	100	27.	1
Chrysene	ND		ug/kg	100	17.	1
Acenaphthylene	ND		ug/kg	130	26.	1
Anthracene	ND		ug/kg	100	33.	1
Benzo(ghi)perylene	ND		ug/kg	130	20.	1
Fluorene	ND		ug/kg	170	16.	1
Phenanthrene	ND		ug/kg	100	20.	1
Dibenzo(a,h)anthracene	ND		ug/kg	100	19.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130	23.	1
Pyrene	ND		ug/kg	100	17.	1
Biphenyl	ND		ug/kg	380	22.	1
Aniline	ND		ug/kg	200	79.	1
4-Chloroaniline	ND		ug/kg	170	30.	1
2-Nitroaniline	ND		ug/kg	170	32.	1
3-Nitroaniline	ND		ug/kg	170	32.	1
4-Nitroaniline	ND		ug/kg	170	70.	1
Dibenzofuran	ND		ug/kg	170	16.	1
2-Methylnaphthalene	ND		ug/kg	200	20.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	170	18.	1
Acetophenone	ND		ug/kg	170	21.	1
2,4,6-Trichlorophenol	ND		ug/kg	100	32.	1
p-Chloro-m-cresol	ND		ug/kg	170	25.	1
2-Chlorophenol	ND		ug/kg	170	20.	1
2,4-Dichlorophenol	ND		ug/kg	150	27.	1
2,4-Dimethylphenol	ND		ug/kg	170	55.	1
2-Nitrophenol	ND		ug/kg	360	63.	1
4-Nitrophenol	ND		ug/kg	240	68.	1
2,4-Dinitrophenol	ND		ug/kg	810	78.	1
4,6-Dinitro-o-cresol	ND		ug/kg	440	81.	1
Pentachlorophenol	ND		ug/kg	130	37.	1
Phenol	ND		ug/kg	170	25.	1
2-Methylphenol	ND		ug/kg	170	26.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	240	26.	1
2,4,5-Trichlorophenol	ND		ug/kg	170	32.	1
Carbazole	ND		ug/kg	170	16.	1
Atrazine	ND		ug/kg	130	59.	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-01 Date Collected: 12/30/24 10:20

Client ID: EB-02 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Westborough Lab					
Benzaldehyde	ND		ug/kg	220	45.	1
Caprolactam	ND		ug/kg	170	51.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	170	34.	1
1,4-Dioxane	ND		ug/kg	25	7.7	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	68	25-120	
Phenol-d6	71	10-120	
Nitrobenzene-d5	68	23-120	
2-Fluorobiphenyl	71	30-120	
2,4,6-Tribromophenol	77	10-136	
4-Terphenyl-d14	66	18-120	

L2476426

01/27/25

Project Name: 52-54 CANAL ST LYONS

01/03/25 12:28

Project Number: 037112

SAMPLE RESULTS

Date Collected: 12/30/24 11:11

Lab Number:

Report Date:

Lab ID: L2476426-02

Date Received: Client ID: 12/30/24 FD-01

52-54 CANAL ST, LYONS, NEW YORK Sample Location: Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 01/02/25 16:45 Analytical Method: 1,8270E

Analyst: ΕK 96% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Acenaphthene	ND		ug/kg	140	18.	1
Hexachlorobenzene	ND		ug/kg	100	19.	1
Bis(2-chloroethyl)ether	ND		ug/kg	150	23.	1
2-Chloronaphthalene	ND		ug/kg	170	17.	1
3,3'-Dichlorobenzidine	ND		ug/kg	170	45.	1
2,4-Dinitrotoluene	ND		ug/kg	170	34.	1
2,6-Dinitrotoluene	ND		ug/kg	170	29.	1
Fluoranthene	ND		ug/kg	100	19.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	170	18.	1
4-Bromophenyl phenyl ether	ND		ug/kg	170	26.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	200	29.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	180	17.	1
Hexachlorobutadiene	ND		ug/kg	170	25.	1
Hexachlorocyclopentadiene	ND		ug/kg	480	150	1
Hexachloroethane	ND		ug/kg	140	27.	1
Isophorone	ND		ug/kg	150	22.	1
Naphthalene	ND		ug/kg	170	20.	1
Nitrobenzene	ND		ug/kg	150	25.	1
NDPA/DPA	ND		ug/kg	140	19.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	170	26.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	170	58.	1
Butyl benzyl phthalate	ND		ug/kg	170	43.	1
Di-n-butylphthalate	ND		ug/kg	170	32.	1
Di-n-octylphthalate	ND		ug/kg	170	57.	1
Diethyl phthalate	ND		ug/kg	170	16.	1
Dimethyl phthalate	ND		ug/kg	170	36.	1
Benzo(a)anthracene	ND		ug/kg	100	19.	1
Benzo(a)pyrene	ND		ug/kg	140	41.	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-02 Date Collected: 12/30/24 11:11

Client ID: Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Benzo(b)fluoranthene	ND		ug/kg	100	28.	1
Benzo(k)fluoranthene	ND		ug/kg	100	27.	1
Chrysene	ND		ug/kg	100	18.	1
Acenaphthylene	ND		ug/kg	140	26.	1
Anthracene	ND		ug/kg	100	33.	1
Benzo(ghi)perylene	ND		ug/kg	140	20.	1
Fluorene	ND		ug/kg	170	16.	1
Phenanthrene	ND		ug/kg	100	20.	1
Dibenzo(a,h)anthracene	ND		ug/kg	100	20.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	24.	1
Pyrene	ND		ug/kg	100	17.	1
Biphenyl	ND		ug/kg	380	22.	1
Aniline	ND		ug/kg	200	80.	1
4-Chloroaniline	ND		ug/kg	170	31.	1
2-Nitroaniline	ND		ug/kg	170	32.	1
3-Nitroaniline	ND		ug/kg	170	32.	1
4-Nitroaniline	ND		ug/kg	170	70.	1
Dibenzofuran	ND		ug/kg	170	16.	1
2-Methylnaphthalene	ND		ug/kg	200	20.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	170	18.	1
Acetophenone	ND		ug/kg	170	21.	1
2,4,6-Trichlorophenol	ND		ug/kg	100	32.	1
p-Chloro-m-cresol	ND		ug/kg	170	25.	1
2-Chlorophenol	ND		ug/kg	170	20.	1
2,4-Dichlorophenol	ND		ug/kg	150	27.	1
2,4-Dimethylphenol	ND		ug/kg	170	56.	1
2-Nitrophenol	ND		ug/kg	360	64.	1
4-Nitrophenol	ND		ug/kg	240	69.	1
2,4-Dinitrophenol	ND		ug/kg	810	79.	1
4,6-Dinitro-o-cresol	ND		ug/kg	440	81.	1
Pentachlorophenol	ND		ug/kg	140	37.	1
Phenol	ND		ug/kg	170	26.	1
2-Methylphenol	ND		ug/kg	170	26.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	240	26.	1
2,4,5-Trichlorophenol	ND		ug/kg	170	32.	1
Carbazole	ND		ug/kg	170	16.	1
Atrazine	ND		ug/kg	140	59.	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-02 Date Collected: 12/30/24 11:11

Client ID: FD-01 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Benzaldehyde	ND		ug/kg	220	46.	1
Caprolactam	ND		ug/kg	170	51.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	170	34.	1
1,4-Dioxane	ND		ug/kg	25	7.8	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	74	25-120
Phenol-d6	78	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	80	30-120
2,4,6-Tribromophenol	86	10-136
4-Terphenyl-d14	74	18-120

L2476426

01/27/25

Lab Number:

Report Date:

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

SAMPLE RESULTS

12/30/24 10:30

Lab ID: Date Collected: L2476426-03

Date Received: Client ID: ESW-03 12/30/24

52-54 CANAL ST, LYONS, NEW YORK Sample Location: Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 01/02/25 16:45 Analytical Method: 1,8270E

Analytical Date: 01/03/25 12:46

Analyst: ΕK 98% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - \	Westborough Lab						
Acenaphthene	ND		ug/kg	140	18.	1	
Hexachlorobenzene	ND		ug/kg	100	19.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	150	23.	1	
2-Chloronaphthalene	ND		ug/kg	170	17.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	170	45.	1	
2,4-Dinitrotoluene	ND		ug/kg	170	34.	1	
2,6-Dinitrotoluene	ND		ug/kg	170	29.	1	
Fluoranthene	ND		ug/kg	100	20.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	170	18.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	170	26.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	200	29.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	180	17.	1	
Hexachlorobutadiene	ND		ug/kg	170	25.	1	
Hexachlorocyclopentadiene	ND		ug/kg	490	150	1	
Hexachloroethane	ND		ug/kg	140	28.	1	
Isophorone	ND		ug/kg	150	22.	1	
Naphthalene	ND		ug/kg	170	21.	1	
Nitrobenzene	ND		ug/kg	150	25.	1	
NDPA/DPA	ND		ug/kg	140	19.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	170	26.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	170	59.	1	
Butyl benzyl phthalate	ND		ug/kg	170	43.	1	
Di-n-butylphthalate	ND		ug/kg	170	32.	1	
Di-n-octylphthalate	ND		ug/kg	170	58.	1	
Diethyl phthalate	ND		ug/kg	170	16.	1	
Dimethyl phthalate	ND		ug/kg	170	36.	1	
Benzo(a)anthracene	ND		ug/kg	100	19.	1	
Benzo(a)pyrene	ND		ug/kg	140	42.	1	

Project Name: 52-54 CANAL ST LYONS **Lab Number:** L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-03 Date Collected: 12/30/24 10:30

Client ID: ESW-03 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Benzo(b)fluoranthene	ND		ug/kg	100	29.	1
Benzo(k)fluoranthene	ND		ug/kg	100	27.	1
Chrysene	ND		ug/kg	100	18.	1
Acenaphthylene	ND		ug/kg	140	26.	1
Anthracene	ND		ug/kg	100	33.	1
Benzo(ghi)perylene	ND		ug/kg	140	20.	1
Fluorene	ND		ug/kg	170	16.	1
Phenanthrene	ND		ug/kg	100	21.	1
Dibenzo(a,h)anthracene	ND		ug/kg	100	20.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	24.	1
Pyrene	ND		ug/kg	100	17.	1
Biphenyl	ND		ug/kg	390	22.	1
Aniline	ND		ug/kg	200	80.	1
4-Chloroaniline	ND		ug/kg	170	31.	1
2-Nitroaniline	ND		ug/kg	170	33.	1
3-Nitroaniline	ND		ug/kg	170	32.	1
4-Nitroaniline	ND		ug/kg	170	70.	1
Dibenzofuran	ND		ug/kg	170	16.	1
2-Methylnaphthalene	ND		ug/kg	200	20.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	170	18.	1
Acetophenone	ND		ug/kg	170	21.	1
2,4,6-Trichlorophenol	ND		ug/kg	100	32.	1
p-Chloro-m-cresol	ND		ug/kg	170	25.	1
2-Chlorophenol	ND		ug/kg	170	20.	1
2,4-Dichlorophenol	ND		ug/kg	150	27.	1
2,4-Dimethylphenol	ND		ug/kg	170	56.	1
2-Nitrophenol	ND		ug/kg	370	64.	1
4-Nitrophenol	ND		ug/kg	240	70.	1
2,4-Dinitrophenol	ND		ug/kg	820	79.	1
4,6-Dinitro-o-cresol	ND		ug/kg	440	82.	1
Pentachlorophenol	ND		ug/kg	140	38.	1
Phenol	ND		ug/kg	170	26.	1
2-Methylphenol	ND		ug/kg	170	26.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	240	27.	1
2,4,5-Trichlorophenol	ND		ug/kg	170	33.	1
Carbazole	ND		ug/kg	170	16.	1
Atrazine	ND		ug/kg	140	60.	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-03 Date Collected: 12/30/24 10:30

Client ID: ESW-03 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
Benzaldehyde	ND		ug/kg	220	46.	1
Caprolactam	ND		ug/kg	170	52.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	170	34.	1
1,4-Dioxane	ND		ug/kg	26	7.8	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	83	25-120
Phenol-d6	86	10-120
Nitrobenzene-d5	78	23-120
2-Fluorobiphenyl	84	30-120
2,4,6-Tribromophenol	96	10-136
4-Terphenyl-d14	85	18-120

L2476426

01/27/25

Project Name: 52-54 CANAL ST LYONS

L2476426-04

01/03/25 13:04

Project Number: 037112

SAMPLE RESULTS

Date Collected: 12/30/24 10:35

Lab Number:

Report Date:

Date Received: Client ID: **ESW-04** 12/30/24

52-54 CANAL ST, LYONS, NEW YORK Sample Location: Field Prep: Not Specified

Sample Depth:

Analytical Date:

Lab ID:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 01/02/25 16:45 Analytical Method: 1,8270E

Analyst: ΕK 91% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Acenaphthene	ND		ug/kg	140	19.	1
Hexachlorobenzene	ND		ug/kg	110	20.	1
Bis(2-chloroethyl)ether	ND		ug/kg	160	24.	1
2-Chloronaphthalene	ND		ug/kg	180	18.	1
3,3'-Dichlorobenzidine	ND		ug/kg	180	48.	1
2,4-Dinitrotoluene	ND		ug/kg	180	36.	1
2,6-Dinitrotoluene	ND		ug/kg	180	31.	1
Fluoranthene	130		ug/kg	110	21.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	180	19.	1
4-Bromophenyl phenyl ether	ND		ug/kg	180	28.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	31.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	200	18.	1
Hexachlorobutadiene	ND		ug/kg	180	26.	1
Hexachlorocyclopentadiene	ND		ug/kg	520	160	1
Hexachloroethane	ND		ug/kg	140	29.	1
Isophorone	ND		ug/kg	160	24.	1
Naphthalene	34	J	ug/kg	180	22.	1
Nitrobenzene	ND		ug/kg	160	27.	1
NDPA/DPA	ND		ug/kg	140	21.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	180	28.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	63.	1
Butyl benzyl phthalate	ND		ug/kg	180	46.	1
Di-n-butylphthalate	ND		ug/kg	180	34.	1
Di-n-octylphthalate	ND		ug/kg	180	62.	1
Diethyl phthalate	ND		ug/kg	180	17.	1
Dimethyl phthalate	ND		ug/kg	180	38.	1
Benzo(a)anthracene	72	J	ug/kg	110	20.	1
Benzo(a)pyrene	75	J	ug/kg	140	44.	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-04 Date Collected: 12/30/24 10:35

Client ID: ESW-04 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
	-					
Benzo(b)fluoranthene	95	J	ug/kg	110	30.	1
Benzo(k)fluoranthene	38	J	ug/kg	110	29.	1
Chrysene	87	J	ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	140	28.	1
Anthracene	ND		ug/kg	110	35.	1
Benzo(ghi)perylene	50	J	ug/kg	140	21.	1
Fluorene	ND		ug/kg	180	18.	1
Phenanthrene	95	J	ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	39	J	ug/kg	140	25.	1
Pyrene	110		ug/kg	110	18.	1
Biphenyl	ND		ug/kg	410	24.	1
Aniline	ND		ug/kg	220	85.	1
4-Chloroaniline	ND		ug/kg	180	33.	1
2-Nitroaniline	ND		ug/kg	180	35.	1
3-Nitroaniline	ND		ug/kg	180	34.	1
4-Nitroaniline	ND		ug/kg	180	75.	1
Dibenzofuran	ND		ug/kg	180	17.	1
2-Methylnaphthalene	38	J	ug/kg	220	22.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	180	19.	1
Acetophenone	ND		ug/kg	180	22.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	34.	1
p-Chloro-m-cresol	ND		ug/kg	180	27.	1
2-Chlorophenol	ND		ug/kg	180	21.	1
2,4-Dichlorophenol	ND		ug/kg	160	29.	1
2,4-Dimethylphenol	ND		ug/kg	180	60.	1
2-Nitrophenol	ND		ug/kg	390	68.	1
4-Nitrophenol	ND		ug/kg	250	74.	1
2,4-Dinitrophenol	ND		ug/kg	870	84.	1
4,6-Dinitro-o-cresol	ND		ug/kg	470	87.	1
Pentachlorophenol	ND		ug/kg	140	40.	1
Phenol	ND		ug/kg	180	27.	1
2-Methylphenol	ND		ug/kg	180	28.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	260	28.	1
2,4,5-Trichlorophenol	ND		ug/kg	180	35.	1
Carbazole	ND		ug/kg	180	18.	1
Atrazine	ND		ug/kg	140	63.	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-04 Date Collected: 12/30/24 10:35

Client ID: ESW-04 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Benzaldehyde	ND		ug/kg	240	49.	1
Caprolactam	ND		ug/kg	180	55.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	180	36.	1
1,4-Dioxane	ND		ug/kg	27	8.3	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	70	25-120	
Phenol-d6	71	10-120	
Nitrobenzene-d5	73	23-120	
2-Fluorobiphenyl	82	30-120	
2,4,6-Tribromophenol	86	10-136	
4-Terphenyl-d14	80	18-120	

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-05 Date Collected: 12/30/24 08:30

Client ID: EQUIPMENT BLANK Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 01/03/25 07:32

Analytical Method: 1,8270E Extraction Date: 01/03/25 07:32

Analytical Date: 01/04/25 09:57

Analyst: EK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1
Isophorone	ND		ug/l	5.0	0.86	1
Nitrobenzene	ND		ug/l	2.0	0.20	1
NDPA/DPA	ND		ug/l	2.0	0.92	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1
Diethyl phthalate	ND		ug/l	5.0	0.76	1
Dimethyl phthalate	ND		ug/l	5.0	0.92	1
Biphenyl	ND		ug/l	2.0	0.20	1
Aniline	ND		ug/l	2.0	0.67	1
4-Chloroaniline	ND		ug/l	5.0	0.47	1
2-Nitroaniline	ND		ug/l	5.0	1.0	1
3-Nitroaniline	ND		ug/l	5.0	1.2	1
4-Nitroaniline	ND		ug/l	5.0	1.4	1
Dibenzofuran	ND		ug/l	2.0	0.40	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1
Acetophenone	ND		ug/l	5.0	0.92	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-05 Date Collected: 12/30/24 08:30

Client ID: EQUIPMENT BLANK Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1
2-Chlorophenol	ND		ug/l	2.0	0.65	1
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1
2-Nitrophenol	ND		ug/l	10	2.0	1
4-Nitrophenol	ND		ug/l	10	1.4	1
2,4-Dinitrophenol	ND		ug/l	20	5.4	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1
Phenol	ND		ug/l	5.0	0.35	1
2-Methylphenol	ND		ug/l	5.0	2.3	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1
Carbazole	ND		ug/l	2.0	0.31	1
Atrazine	ND		ug/l	10	1.0	1
Benzaldehyde	ND		ug/l	5.0	1.1	1
Caprolactam	ND		ug/l	10	1.2	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	44	21-120	
Phenol-d6	31	10-120	
Nitrobenzene-d5	60	23-120	
2-Fluorobiphenyl	60	15-120	
2,4,6-Tribromophenol	70	10-120	
4-Terphenyl-d14	67	41-149	

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-05 Date Collected: 12/30/24 08:30

Client ID: EQUIPMENT BLANK Date Received: 12/30/24
Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 01/03/25 07:32

Analytical Date: 01/04/25 14:48

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ıb				
Acenaphthene	ND		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.03	J	ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	ND		ug/l	0.10	0.02	1
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.03	1
Benzo(a)pyrene	0.04	J	ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.08	J	ug/l	0.10	0.03	1
Benzo(k)fluoranthene	0.08	J	ug/l	0.10	0.03	1
Chrysene	0.05	J	ug/l	0.10	0.03	1
Acenaphthylene	ND		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	0.11		ug/l	0.10	0.02	1
Fluorene	ND		ug/l	0.10	0.03	1
Phenanthrene	ND		ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	0.12		ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	0.11		ug/l	0.10	0.02	1
Pyrene	ND		ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

Project Name: 52-54 CANAL ST LYONS **Lab Number:** L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-05 Date Collected: 12/30/24 08:30

Client ID: EQUIPMENT BLANK Date Received: 12/30/24
Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	40	21-120
Phenol-d6	31	10-120
Nitrobenzene-d5	63	23-120
2-Fluorobiphenyl	63	15-120
2,4,6-Tribromophenol	64	10-120
4-Terphenyl-d14	71	41-149

Project Name: 52-54 CANAL ST LYONS Lab Number:

Project Number: 037112 Report Date: 01/27/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3546
Analytical Date: 01/02/25 19:37 Extraction Date: 01/02/25 00:27

Analyst: LJG

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS - V	Vestborough	Lab for s	ample(s):	01-04	Batch:	WG2015449-1
Acenaphthene	ND		ug/kg	130		17.
Hexachlorobenzene	ND		ug/kg	99		18.
Bis(2-chloroethyl)ether	ND		ug/kg	150		22.
2-Chloronaphthalene	ND		ug/kg	160		16.
3,3'-Dichlorobenzidine	ND		ug/kg	160		44.
2,4-Dinitrotoluene	ND		ug/kg	160		33.
2,6-Dinitrotoluene	ND		ug/kg	160		28.
Fluoranthene	ND		ug/kg	99		19.
4-Chlorophenyl phenyl ether	ND		ug/kg	160		18.
4-Bromophenyl phenyl ether	ND		ug/kg	160		25.
Bis(2-chloroisopropyl)ether	ND		ug/kg	200		28.
Bis(2-chloroethoxy)methane	ND		ug/kg	180		16.
Hexachlorobutadiene	ND		ug/kg	160		24.
Hexachlorocyclopentadiene	ND		ug/kg	470		150
Hexachloroethane	ND		ug/kg	130		27.
Isophorone	ND		ug/kg	150		21.
Naphthalene	ND		ug/kg	160		20.
Nitrobenzene	ND		ug/kg	150		24.
NDPA/DPA	ND		ug/kg	130		19.
n-Nitrosodi-n-propylamine	ND		ug/kg	160		25.
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160		57.
Butyl benzyl phthalate	ND		ug/kg	160		41.
Di-n-butylphthalate	ND		ug/kg	160		31.
Di-n-octylphthalate	ND		ug/kg	160		56.
Diethyl phthalate	ND		ug/kg	160		15.
Dimethyl phthalate	ND		ug/kg	160		34.
Benzo(a)anthracene	ND		ug/kg	99		18.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	99		28.

01/02/25 00:27

Project Name: Lab Number: 52-54 CANAL ST LYONS

Project Number: Report Date: 037112 01/27/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3546 Analytical Date: 01/02/25 19:37 **Extraction Date:**

Analyst: LJG

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/M	IS - Westboroug	h Lab for s	ample(s):	01-04	Batch:	WG2015449-1
Benzo(k)fluoranthene	ND		ug/kg	99		26.
Chrysene	ND		ug/kg	99		17.
Acenaphthylene	ND		ug/kg	130		25.
Anthracene	ND		ug/kg	99		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	99		20.
Dibenzo(a,h)anthracene	ND		ug/kg	99		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	99		16.
Biphenyl	ND		ug/kg	380		21.
Aniline	ND		ug/kg	200		78.
4-Chloroaniline	ND		ug/kg	160		30.
2-Nitroaniline	ND		ug/kg	160		32.
3-Nitroaniline	ND		ug/kg	160		31.
4-Nitroaniline	ND		ug/kg	160		68.
Dibenzofuran	ND		ug/kg	160		16.
2-Methylnaphthalene	ND		ug/kg	200		20.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160		17.
Acetophenone	ND		ug/kg	160		20.
2,4,6-Trichlorophenol	ND		ug/kg	99		31.
p-Chloro-m-cresol	ND		ug/kg	160		24.
2-Chlorophenol	ND		ug/kg	160		19.
2,4-Dichlorophenol	ND		ug/kg	150		26.
2,4-Dimethylphenol	ND		ug/kg	160		54.
2-Nitrophenol	ND		ug/kg	360		62.
4-Nitrophenol	ND		ug/kg	230		67.
2,4-Dinitrophenol	ND		ug/kg	790		77.
4,6-Dinitro-o-cresol	ND		ug/kg	430		79.

Lab Number:

Project Name: 52-54 CANAL ST LYONS

Project Number: Report Date: 037112 01/27/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 01/02/25 19:37

Analyst: LJG Extraction Method: EPA 3546 01/02/25 00:27 Extraction Date:

Semivolatile Organics by GC/MS - Westborough Lab for sample(s):01-04Batch:WG2015449-PentachlorophenolNDug/kg13036.PhenolNDug/kg16025.	
3 3 3	1
Phenol ND ug/kg 160 25.	
2-Methylphenol ND ug/kg 160 26.	
3-Methylphenol/4-Methylphenol ND ug/kg 240 26.	
2,4,5-Trichlorophenol ND ug/kg 160 32.	
Carbazole ND ug/kg 160 16.	
Atrazine ND ug/kg 130 58.	
Benzaldehyde ND ug/kg 220 44.	
Caprolactam ND ug/kg 160 50.	
2,3,4,6-Tetrachlorophenol ND ug/kg 160 33.	
1,4-Dioxane ND ug/kg 25 7.6	

Surrogate	%Recovery 0	Acceptance Qualifier Criteria
2-Fluorophenol	61	25-120
Phenol-d6	61	10-120
Nitrobenzene-d5	50	23-120
2-Fluorobiphenyl	50	30-120
2,4,6-Tribromophenol	54	10-136
4-Terphenyl-d14	58	18-120

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number:

L2476426

Report Date: 01/27/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 01/04/25 07:20

Analyst: EK

Extraction Method: EPA 3510C Extraction Date: 01/03/25 07:32

arameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	05	Batch:	WG2016003-1	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.39	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.8	
2,4-Dinitrotoluene	ND		ug/l		5.0	0.54	
2,6-Dinitrotoluene	ND		ug/l		5.0	0.84	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.39	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.24	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.40	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.84	
Hexachlorocyclopentadiene	ND		ug/l		20	1.2	
Isophorone	ND		ug/l		5.0	0.86	
Nitrobenzene	ND		ug/l		2.0	0.20	
NDPA/DPA	ND		ug/l		2.0	0.92	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.91	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	1.4	
Butyl benzyl phthalate	ND		ug/l		5.0	2.6	
Di-n-butylphthalate	ND		ug/l		5.0	0.96	
Di-n-octylphthalate	ND		ug/l		5.0	2.3	
Diethyl phthalate	ND		ug/l		5.0	0.76	
Dimethyl phthalate	ND		ug/l		5.0	0.92	
Biphenyl	ND		ug/l		2.0	0.20	
Aniline	ND		ug/l		2.0	0.67	
4-Chloroaniline	ND		ug/l		5.0	0.47	
2-Nitroaniline	ND		ug/l		5.0	1.0	
3-Nitroaniline	ND		ug/l		5.0	1.2	
4-Nitroaniline	ND		ug/l		5.0	1.4	
Dibenzofuran	ND		ug/l		2.0	0.40	
1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.24	
Acetophenone	ND		ug/l		5.0	0.92	
2,4,6-Trichlorophenol	ND		ug/l		5.0	2.1	

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

L2476426 Report Date: 01/27/25

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 01/04/25 07:20

Analyst: ΕK

Extraction Method: EPA 3510C 01/03/25 07:32 Extraction Date:

Vestborough ND ND ND	Lab for sa	mple(s):		Batch:	WG2016003-1	l
ND		ug/l		0.0		
				2.0	0.61	
ND		ug/l		2.0	0.65	
טא		ug/l		5.0	1.7	
ND		ug/l		5.0	2.0	
ND		ug/l		10	2.0	
ND		ug/l		10	1.4	
ND		ug/l		20	5.4	
ND		ug/l		10	2.3	
ND		ug/l		5.0	0.35	
ND		ug/l		5.0	2.3	
ND		ug/l		5.0	1.4	
ND		ug/l		5.0	2.1	
ND		ug/l		2.0	0.31	
ND		ug/l		10	1.0	
ND		ug/l		5.0	1.1	
ND		ug/l		10	1.2	
ND		ug/l		5.0	2.2	
	ND N	ND N	ND ug/l ND ug/l	ND ug/l ND ug/l	ND ug/l 10 ND ug/l 10 ND ug/l 20 ND ug/l 10 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 2.0 ND ug/l 10 ND ug/l 5.0 ND ug/l 10 ND ug/l 10	ND ug/l 10 2.0 ND ug/l 10 1.4 ND ug/l 20 5.4 ND ug/l 10 2.3 ND ug/l 5.0 0.35 ND ug/l 5.0 2.3 ND ug/l 5.0 1.4 ND ug/l 5.0 2.1 ND ug/l 2.0 0.31 ND ug/l 10 1.0 ND ug/l 5.0 1.1 ND ug/l 10 1.2

Surrogate	%Recovery Qu	Acceptance alifier Criteria
2-Fluorophenol	46	21-120
Phenol-d6	34	10-120
Nitrobenzene-d5	63	23-120
2-Fluorobiphenyl	59	15-120
2,4,6-Tribromophenol	90	10-120
4-Terphenyl-d14	67	41-149

Project Name: 52-54 CANAL ST LYONS Lab Number:

Project Number: 037112 Report Date: 01/27/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Analytical Date: 01/04/25 08:02

Analyst: JJW

Extraction Method: EPA 3510C Extraction Date: 01/03/25 07:32

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/MS-SIM	Л - Westbo	rough Lab	for sample	e(s): 05	Batch: WG201600	4-1
Acenaphthene	ND		ug/l	0.10	0.02	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	ND		ug/l	0.10	0.03	
Hexachlorobutadiene	ND		ug/l	0.50	0.02	
Naphthalene	ND		ug/l	0.10	0.02	
Benzo(a)anthracene	ND		ug/l	0.10	0.03	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	0.04	J	ug/l	0.10	0.03	
Benzo(k)fluoranthene	0.04	J	ug/l	0.10	0.03	
Chrysene	ND		ug/l	0.10	0.03	
Acenaphthylene	ND		ug/l	0.10	0.02	
Anthracene	ND		ug/l	0.10	0.02	
Benzo(ghi)perylene	0.05	J	ug/l	0.10	0.02	
Fluorene	ND		ug/l	0.10	0.03	
Phenanthrene	ND		ug/l	0.10	0.04	
Dibenzo(a,h)anthracene	0.06	J	ug/l	0.10	0.02	
Indeno(1,2,3-cd)pyrene	0.06	J	ug/l	0.10	0.02	
Pyrene	ND		ug/l	0.10	0.04	
2-Methylnaphthalene	ND		ug/l	0.10	0.03	
Pentachlorophenol	ND		ug/l	0.80	0.06	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.02	

Project Name: 52-54 CANAL ST LYONS **Lab Number:** L2476426

Project Number: 037112 Report Date: 01/27/25

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 01/04/25 08:02 Extraction Date: 01/03/25 07:32

Analyst: JJW

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 05 Batch: WG2016004-1

		Acceptance	
Surrogate	%Recovery Qualif	ier Criteria	
2-Fluorophenol	44	21-120	
Phenol-d6	33	10-120	
Nitrobenzene-d5	67	23-120	
2-Fluorobiphenyl	64	15-120	
2,4,6-Tribromophenol	67	10-120	
4-Terphenyl-d14	76	41-149	

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number: L2476426

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbo	orough Lab As	sociated sampl	e(s): 01-04	Batch:	WG2015449-2	WG2015449-3		
Acenaphthene	53		54		31-137	2	50	
Hexachlorobenzene	52		50		40-140	4	50	
Bis(2-chloroethyl)ether	53		56		40-140	6	50	
2-Chloronaphthalene	53		54		40-140	2	50	
3,3'-Dichlorobenzidine	40		36	Q	40-140	11	50	
2,4-Dinitrotoluene	58		56		40-132	4	50	
2,6-Dinitrotoluene	57		58		40-140	2	50	
Fluoranthene	55		53		40-140	4	50	
4-Chlorophenyl phenyl ether	52		52		40-140	0	50	
4-Bromophenyl phenyl ether	52		51		40-140	2	50	
Bis(2-chloroisopropyl)ether	50		55		40-140	10	50	
Bis(2-chloroethoxy)methane	59		63		40-117	7	50	
Hexachlorobutadiene	45		45		40-140	0	50	
Hexachlorocyclopentadiene	46		49		40-140	6	50	
Hexachloroethane	54		58		40-140	7	50	
Isophorone	50		54		40-140	8	50	
Naphthalene	54		55		40-140	2	50	
Nitrobenzene	48		51		40-140	6	50	
NDPA/DPA	55		54		36-157	2	50	
n-Nitrosodi-n-propylamine	47		51		32-121	8	50	
Bis(2-ethylhexyl)phthalate	70		64		40-140	9	50	
Butyl benzyl phthalate	66		62		40-140	6	50	
Di-n-butylphthalate	66		62		40-140	6	50	

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number: L2476426

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbo	orough Lab Ass	sociated sam	nple(s): 01-04	Batch:	WG2015449-2	WG2015449-3			
Di-n-octylphthalate	69		65		40-140	6		50	
Diethyl phthalate	56		54		40-140	4		50	
Dimethyl phthalate	52		55		40-140	6		50	
Benzo(a)anthracene	54		51		40-140	6		50	
Benzo(a)pyrene	59		56		40-140	5		50	
Benzo(b)fluoranthene	55		52		40-140	6		50	
Benzo(k)fluoranthene	56		54		40-140	4		50	
Chrysene	55		51		40-140	8		50	
Acenaphthylene	60		61		40-140	2		50	
Anthracene	57		56		40-140	2		50	
Benzo(ghi)perylene	58		53		40-140	9		50	
Fluorene	56		55		40-140	2		50	
Phenanthrene	55		54		40-140	2		50	
Dibenzo(a,h)anthracene	55		50		40-140	10		50	
Indeno(1,2,3-cd)pyrene	56		51		40-140	9		50	
Pyrene	54		51		35-142	6		50	
Biphenyl	55		55		37-127	0		50	
Aniline	31	Q	35	Q	40-140	12		50	
4-Chloroaniline	22	Q	22	Q	40-140	0		50	
2-Nitroaniline	64		67		47-134	5		50	
3-Nitroaniline	42		40		26-129	5		50	
4-Nitroaniline	57		56		41-125	2		50	
Dibenzofuran	53		52		40-140	2		50	

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number: L2476426

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbe	orough Lab As	sociated sample(s): 01-04	Batch: WG2015449-2	WG2015449-3	
2-Methylnaphthalene	49	52	40-140	6	50
1,2,4,5-Tetrachlorobenzene	49	52	40-117	6	50
Acetophenone	59	65	14-144	10	50
2,4,6-Trichlorophenol	49	50	30-130	2	50
p-Chloro-m-cresol	56	58	26-103	4	50
2-Chlorophenol	59	64	25-102	8	50
2,4-Dichlorophenol	57	61	30-130	7	50
2,4-Dimethylphenol	65	69	30-130	6	50
2-Nitrophenol	61	66	30-130	8	50
4-Nitrophenol	52	52	11-114	0	50
2,4-Dinitrophenol	40	41	4-130	2	50
4,6-Dinitro-o-cresol	46	46	10-130	0	50
Pentachlorophenol	41	41	17-109	0	50
Phenol	52	59	26-90	13	50
2-Methylphenol	60	64	30-130.	6	50
3-Methylphenol/4-Methylphenol	58	64	30-130	10	50
2,4,5-Trichlorophenol	54	55	30-130	2	50
Carbazole	59	57	54-128	3	50
Atrazine	53	53	40-140	0	50
Benzaldehyde	64	68	40-140	6	50
Caprolactam	58	57	15-130	2	50
2,3,4,6-Tetrachlorophenol	51	52	40-140	2	50
1,4-Dioxane	42	45	40-140	7	50

Project Name: 52-54 CANAL ST LYONS

Lab Number:

L2476426

Project Number: 037112

7112

Report Date:

01/27/25

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04 Batch: WG2015449-2 WG2015449-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	61	64	25-120
Phenol-d6	59	66	10-120
Nitrobenzene-d5	50	54	23-120
2-Fluorobiphenyl	50	53	30-120
2,4,6-Tribromophenol	54	53	10-136
4-Terphenyl-d14	56	52	18-120

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number: L2476426

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - We	stborough Lab Ass	ociated samp	ole(s): 05 Ba	tch: WG201	6003-2 WG20	16003-3		
Bis(2-chloroethyl)ether	64		67		40-140	5		30
3,3'-Dichlorobenzidine	85		60		40-140	34	Q	30
2,4-Dinitrotoluene	75		83		48-143	10		30
2,6-Dinitrotoluene	78		85		40-140	9		30
4-Chlorophenyl phenyl ether	64		69		40-140	8		30
4-Bromophenyl phenyl ether	71		77		40-140	8		30
Bis(2-chloroisopropyl)ether	54		59		40-140	9		30
Bis(2-chloroethoxy)methane	68		67		40-140	1		30
Hexachlorocyclopentadiene	31	Q	35	Q	40-140	12		30
Isophorone	70		72		40-140	3		30
Nitrobenzene	67		72		40-140	7		30
NDPA/DPA	66		66		40-140	0		30
n-Nitrosodi-n-propylamine	70		74		29-132	6		30
Bis(2-ethylhexyl)phthalate	80		83		40-140	4		30
Butyl benzyl phthalate	88		91		40-140	3		30
Di-n-butylphthalate	75		88		40-140	16		30
Di-n-octylphthalate	82		86		40-140	5		30
Diethyl phthalate	73		79		40-140	8		30
Dimethyl phthalate	75		79		40-140	5		30
Biphenyl	78		83		40-140	6		30
Aniline	19	Q	10	Q	40-140	63	Q	30
4-Chloroaniline	50		47		40-140	6		30
2-Nitroaniline	80		86		52-143	7		30

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number: L2476426

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westb	orough Lab Ass	sociated sample(s): 05 Batch	n: WG2016003-2 WG20	16003-3	
3-Nitroaniline	80	80	25-145	0	30
4-Nitroaniline	87	97	51-143	11	30
Dibenzofuran	67	71	40-140	6	30
1,2,4,5-Tetrachlorobenzene	70	74	2-134	6	30
Acetophenone	88	90	39-129	2	30
2,4,6-Trichlorophenol	78	80	30-130	3	30
p-Chloro-m-cresol	82	85	23-97	4	30
2-Chlorophenol	73	74	27-123	1	30
2,4-Dichlorophenol	76	76	30-130	0	30
2,4-Dimethylphenol	54	47	30-130	14	30
2-Nitrophenol	75	82	30-130	9	30
4-Nitrophenol	64	74	10-80	14	30
2,4-Dinitrophenol	44	54	20-130	20	30
4,6-Dinitro-o-cresol	67	79	20-164	16	30
Phenol	45	44	12-110	2	30
2-Methylphenol	68	65	30-130	5	30
3-Methylphenol/4-Methylphenol	65	70	30-130	7	30
2,4,5-Trichlorophenol	80	88	30-130	10	30
Carbazole	76	80	55-144	5	30
Atrazine	106	116	40-140	9	30
Benzaldehyde	90	93	40-140	3	30
Caprolactam	36	36	10-130	0	30
2,3,4,6-Tetrachlorophenol	83	86	40-140	4	30

Project Name: 52-54 CANAL ST LYONS

Lab Number:

L2476426

Project Number: 037112

Report Date:

01/27/25

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 05 Batch: WG2016003-2 WG2016003-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	54	55	21-120
Phenol-d6	40	42	10-120
Nitrobenzene-d5	69	69	23-120
2-Fluorobiphenyl	61	63	15-120
2,4,6-Tribromophenol	97	90	10-120
4-Terphenyl-d14	70	72	41-149

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number: L2476426

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM	- Westborough Lab	Associated	sample(s): 05	Batch:	WG2016004-2	WG2016004-3	
Acenaphthene	70		72		40-140	3	40
2-Chloronaphthalene	64		70		40-140	9	40
Fluoranthene	74		78		40-140	5	40
Hexachlorobutadiene	55		62		40-140	12	40
Naphthalene	59		64		40-140	8	40
Benzo(a)anthracene	80		85		40-140	6	40
Benzo(a)pyrene	82		84		40-140	2	40
Benzo(b)fluoranthene	82		86		40-140	5	40
Benzo(k)fluoranthene	80		85		40-140	6	40
Chrysene	76		80		40-140	5	40
Acenaphthylene	66		70		40-140	6	40
Anthracene	75		78		40-140	4	40
Benzo(ghi)perylene	89		93		40-140	4	40
Fluorene	74		79		40-140	7	40
Phenanthrene	74		78		40-140	5	40
Dibenzo(a,h)anthracene	93		98		40-140	5	40
Indeno(1,2,3-cd)pyrene	91		96		40-140	5	40
Pyrene	74		78		40-140	5	40
2-Methylnaphthalene	63		69		40-140	9	40
Pentachlorophenol	92		100		40-140	8	40
Hexachlorobenzene	76		81		40-140	6	40
Hexachloroethane	53		60		40-140	12	40

Project Name: 52-54 CANAL ST LYONS

Lab Number:

L2476426

Project Number: 037112

Report Date:

01/27/25

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 05 Batch: WG2016004-2 WG2016004-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	55	56	21-120
Phenol-d6	42	43	10-120
Nitrobenzene-d5	68	71	23-120
2-Fluorobiphenyl	62	64	15-120
2,4,6-Tribromophenol	93	94	10-120
4-Terphenyl-d14	75	78	41-149

PCBS

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-01 Date Collected: 12/30/24 10:20

Client ID: EB-02 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 01/02/25 15:45

Analytical Date: 01/04/25 10:44 Cleanup Method: EPA 3665A
Analyst: MEO Cleanup Date: 01/03/25
Percent Solids: 97% Cleanup Method: EPA 3660B

Cleanup Date: 01/04/25

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Column						
Polychlorinated Biphenyls by 0	Polychlorinated Biphenyls by GC - Westborough Lab											
Aroclor 1016	ND	ug/kg	50.5	4.49	1	Α						
Aroclor 1221	ND	ug/kg	50.5	5.06	1	Α						
Aroclor 1232	ND	ug/kg	50.5	10.7	1	Α						
Aroclor 1242	ND	ug/kg	50.5	6.81	1	Α						
Aroclor 1248	ND	ug/kg	50.5	7.58	1	Α						
Aroclor 1254	ND	ug/kg	50.5	5.53	1	Α						
Aroclor 1260	ND	ug/kg	50.5	9.34	1	Α						
Aroclor 1262	ND	ug/kg	50.5	6.42	1	Α						
Aroclor 1268	ND	ug/kg	50.5	5.24	1	Α						
PCBs, Total	ND	ug/kg	50.5	4.49	1	Α						

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	58		30-150	Α
Decachlorobiphenyl	58		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	57		30-150	В
Decachlorobiphenyl	61		30-150	В

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-02 Date Collected: 12/30/24 11:11

Client ID: FD-01 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 01/02/25 15:45

Analytical Date: 01/04/25 10:52 Cleanup Method: EPA 3665A
Analyst: MEO Cleanup Date: 01/03/25
Percent Solids: 96% Cleanup Method: EPA 3660B

Percent Solids: 96% Cleanup Method: EPA 3660 Cleanup Date: 01/04/25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug/kg	49.2	4.37	1	Α		
Aroclor 1221	ND		ug/kg	49.2	4.93	1	A		
Aroclor 1232	ND		ug/kg	49.2	10.4	1	Α		
Aroclor 1242	ND		ug/kg	49.2	6.63	1	Α		
Aroclor 1248	ND		ug/kg	49.2	7.38	1	Α		
Aroclor 1254	ND		ug/kg	49.2	5.38	1	Α		
Aroclor 1260	ND		ug/kg	49.2	9.09	1	Α		
Aroclor 1262	ND		ug/kg	49.2	6.25	1	Α		
Aroclor 1268	ND		ug/kg	49.2	5.10	1	Α		
PCBs, Total	ND		ug/kg	49.2	4.37	1	Α		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	58		30-150	Α
Decachlorobiphenyl	58		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	55		30-150	В
Decachlorobiphenyl	58		30-150	В

Project Name: Lab Number: 52-54 CANAL ST LYONS L2476426

Project Number: 037112 **Report Date:** 01/27/25

SAMPLE RESULTS

Lab ID: Date Collected: 12/30/24 10:30 L2476426-03

Client ID: Date Received: 12/30/24 ESW-03 Sample Location: Field Prep: Not Specified

52-54 CANAL ST, LYONS, NEW YORK

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 01/02/25 15:45 1,8082A Analytical Method:

Cleanup Method: EPA 3665A Analytical Date: 01/04/25 11:00 Cleanup Date: 01/03/25 Analyst: MEO Cleanup Method: EPA 3660B

98% Percent Solids: Cleanup Date: 01/04/25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	stborough Lab						
Aroclor 1016	ND		ug/kg	49.4	4.39	1	Α
Aroclor 1221	ND		ug/kg	49.4	4.95	1	Α
Aroclor 1232	ND		ug/kg	49.4	10.5	1	Α
Aroclor 1242	ND		ug/kg	49.4	6.66	1	Α
Aroclor 1248	ND		ug/kg	49.4	7.42	1	Α
Aroclor 1254	ND		ug/kg	49.4	5.41	1	Α
Aroclor 1260	ND		ug/kg	49.4	9.14	1	Α
Aroclor 1262	ND		ug/kg	49.4	6.28	1	Α
Aroclor 1268	ND		ug/kg	49.4	5.12	1	Α
PCBs, Total	ND		ug/kg	49.4	4.39	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	61		30-150	Α
Decachlorobiphenyl	62		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	59		30-150	В
Decachlorobiphenyl	60		30-150	В

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-04 Date Collected: 12/30/24 10:35

Client ID: ESW-04 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 01/02/25 15:45
Analytical Date: 01/04/25 11:07 Cleanup Method: EPA 3665A

Analytical Date: 01/04/25 11:07 Cleanup Method: EPA 3665A
Analyst: MEO Cleanup Date: 01/03/25
Percent Solids: 91% Cleanup Method: EPA 3660B

Cleanup Date: 01/04/25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	estborough Lab						
Associate 4040	ND			50.0	4.04	4	۸
Aroclor 1016	ND		ug/kg	52.2	4.64	<u> </u>	Α
Aroclor 1221	ND		ug/kg	52.2	5.24	1	Α
Aroclor 1232	ND		ug/kg	52.2	11.1	1	Α
Aroclor 1242	ND		ug/kg	52.2	7.04	1	Α
Aroclor 1248	ND		ug/kg	52.2	7.84	1	Α
Aroclor 1254	ND		ug/kg	52.2	5.72	1	Α
Aroclor 1260	ND		ug/kg	52.2	9.66	1	Α
Aroclor 1262	ND		ug/kg	52.2	6.64	1	Α
Aroclor 1268	ND		ug/kg	52.2	5.41	1	Α
PCBs, Total	ND		ug/kg	52.2	4.64	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	62		30-150	Α
Decachlorobiphenyl	63		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	60		30-150	В
Decachlorobiphenyl	63		30-150	В

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-05 Date Collected: 12/30/24 08:30

Client ID: EQUIPMENT BLANK Date Received: 12/30/24
Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Cample Location. 62 64 6/11/12 61, ET 6146, NEW TOTAL

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8082A Extraction Date: 01/02/25 23:18
Analytical Date: 01/03/25 09:22 Cleanup Method: EPA 3665A

Analyst: MHG Cleanup Date: 01/03/25
Cleanup Method: EPA 3660B

Cleanup Date: 01/03/25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - V	Vestborough Lab						
Aroclor 1016	ND		ug/l	0.071	0.061	1	Α
Aroclor 1221	ND		ug/l	0.071	0.061	1	Α
Aroclor 1232	ND		ug/l	0.071	0.061	1	Α
Aroclor 1242	ND		ug/l	0.071	0.061	1	Α
Aroclor 1248	ND		ug/l	0.071	0.061	1	Α
Aroclor 1254	ND		ug/l	0.071	0.061	1	Α
Aroclor 1260	ND		ug/l	0.071	0.061	1	Α
Aroclor 1262	ND		ug/l	0.071	0.061	1	Α
Aroclor 1268	ND		ug/l	0.071	0.061	1	Α
PCBs, Total	ND		ug/l	0.071	0.061	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	85		30-150	Α
Decachlorobiphenyl	64		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	92		30-150	В
Decachlorobiphenyl	80		30-150	В

Project Name: 52-54 CANAL ST LYONS Lab Number:

Project Number: 037112 Report Date: 01/27/25

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 01/03/25 00:43

Analyst: MEO

Extraction Method: EPA 3546
Extraction Date: 01/02/25 08:00
Cleanup Method: EPA 3665A
Cleanup Date: 01/02/25
Cleanup Method: EPA 3660B
Cleanup Date: 01/02/25

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC - V	Nestborough	Lab for s	ample(s):	01-04	Batch:	WG20	15555-1
Aroclor 1016	ND		ug/kg	49.7		4.41	А
Aroclor 1221	ND		ug/kg	49.7		4.98	Α
Aroclor 1232	ND		ug/kg	49.7		10.5	Α
Aroclor 1242	ND		ug/kg	49.7		6.70	Α
Aroclor 1248	ND		ug/kg	49.7		7.46	Α
Aroclor 1254	ND		ug/kg	49.7		5.44	Α
Aroclor 1260	ND		ug/kg	49.7		9.18	Α
Aroclor 1262	ND		ug/kg	49.7		6.31	Α
Aroclor 1268	ND		ug/kg	49.7		5.15	Α
PCBs, Total	ND		ug/kg	49.7		4.41	Α

		Acceptano	e
Surrogate	%Recovery Qualifier	Criteria	Column
0.45 C Tetrachlers in unders	24	20.450	
2,4,5,6-Tetrachloro-m-xylene	64	30-150	Α
Decachlorobiphenyl	66	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	61	30-150	В
Decachlorobiphenyl	65	30-150	В

Lab Number:

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112 Report Date: 01/27/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 01/03/25 08:45

Analyst: MHG

Extraction Method: EPA 3510C
Extraction Date: 01/02/25 23:18
Cleanup Method: EPA 3665A
Cleanup Date: 01/03/25
Cleanup Method: EPA 3660B
Cleanup Date: 01/03/25

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	n Lab for s	ample(s):	05 Batch:	WG2015910	0-1
Aroclor 1016	ND		ug/l	0.071	0.061	А
Aroclor 1221	ND		ug/l	0.071	0.061	Α
Aroclor 1232	ND		ug/l	0.071	0.061	Α
Aroclor 1242	ND		ug/l	0.071	0.061	Α
Aroclor 1248	ND		ug/l	0.071	0.061	Α
Aroclor 1254	ND		ug/l	0.071	0.061	Α
Aroclor 1260	ND		ug/l	0.071	0.061	Α
Aroclor 1262	ND		ug/l	0.071	0.061	Α
Aroclor 1268	ND		ug/l	0.071	0.061	Α
PCBs, Total	ND		ug/l	0.071	0.061	Α

		Acceptano	e
Surrogate	%Recovery Qualifier	Criteria	Column
O 4.5.0 Tetrephlane as unlare	74	20.450	
2,4,5,6-Tetrachloro-m-xylene	74	30-150	Α
Decachlorobiphenyl	72	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	75	30-150	В
Decachlorobiphenyl	76	30-150	В

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number:

L2476426

Report Date:

01/27/25

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual %F	Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - We	estborough Lab Asso	ociated sample(s): 01-04	Batch: \	WG2015555-2	WG2015555-3			
Aroclor 1016	65		67		40-140	3		50	Α
Aroclor 1260	66		67		40-140	2		50	А

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	64	66	30-150 A
Decachlorobiphenyl	68	69	30-150 A
2,4,5,6-Tetrachloro-m-xylene	61	62	30-150 B
Decachlorobiphenyl	63	63	30-150 B

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number:

L2476426

Report Date:

01/27/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - W	estborough Lab Asso	ciated samp	ole(s): 05 Bat	ch: WG2	015910-2 WG20	15910-3			
Aroclor 1016	78		87		40-140	11	l	50	Α
Aroclor 1260	85		94		40-140	10		50	Α

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	86	92	30-150 A
Decachlorobiphenyl	89	96	30-150 A
2,4,5,6-Tetrachloro-m-xylene	85	93	30-150 B
Decachlorobiphenyl	88	102	30-150 B

INORGANICS & MISCELLANEOUS

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-01 Date Collected: 12/30/24 10:20

Client ID: EB-02 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result C	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	96.5		%	0.100	NA	1	-	12/31/24 10:25	121,2540G	ROI

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-02 Date Collected: 12/30/24 11:11

Client ID: FD-01 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	96.4		%	0.100	NA	1	-	12/31/24 10:25	121,2540G	ROI

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-03 Date Collected: 12/30/24 10:30

Client ID: ESW-03 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	97.7		%	0.100	NA	1	-	12/31/24 10:25	121,2540G	ROI

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-04 Date Collected: 12/30/24 10:35

Client ID: ESW-04 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	91.4		%	0.100	NA	1	-	12/31/24 10:25	121,2540G	ROI

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2476426

Project Number: 037112

52-54 CANAL ST LYONS

Project Name:

Report Date:

01/27/25

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-04	QC Batch ID:	WG2015145-1	QC Sample:	L2476356-01	Client ID:	DUP Sample
Solids, Total	73.2		72.9	%	0		20

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Lab Number: L2476426
Report Date: 01/27/25

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2476426-01A	Vial MeOH preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260HLW-R2(14)
L2476426-01B	Vial water preserved	Α	NA		4.2	Υ	Absent	31-DEC-24 01:52	NYTCL-8260HLW-R2(14)
L2476426-01C	Vial water preserved	Α	NA		4.2	Υ	Absent	31-DEC-24 01:52	NYTCL-8260HLW-R2(14)
L2476426-01D	Plastic 120ml unpreserved	Α	NA		4.2	Υ	Absent		TS(7)
L2476426-01E	Glass 250ml/8oz unpreserved	Α	NA		4.2	Υ	Absent		NYTCL-8270(14),NYTCL-8082(365)
L2476426-02A	Vial MeOH preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260HLW-R2(14)
L2476426-02B	Vial water preserved	Α	NA		4.2	Υ	Absent	31-DEC-24 01:52	NYTCL-8260HLW-R2(14)
L2476426-02C	Vial water preserved	Α	NA		4.2	Υ	Absent	31-DEC-24 01:52	NYTCL-8260HLW-R2(14)
L2476426-02D	Plastic 120ml unpreserved	Α	NA		4.2	Υ	Absent		TS(7)
L2476426-02E	Glass 250ml/8oz unpreserved	Α	NA		4.2	Υ	Absent		NYTCL-8270(14),NYTCL-8082(365)
L2476426-03A	Vial MeOH preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260HLW-R2(14)
L2476426-03B	Vial water preserved	Α	NA		4.2	Υ	Absent	31-DEC-24 01:52	NYTCL-8260HLW-R2(14)
L2476426-03C	Vial water preserved	Α	NA		4.2	Υ	Absent	31-DEC-24 01:52	NYTCL-8260HLW-R2(14)
L2476426-03D	Plastic 120ml unpreserved	Α	NA		4.2	Υ	Absent		TS(7)
L2476426-03E	Glass 250ml/8oz unpreserved	Α	NA		4.2	Υ	Absent		NYTCL-8270(14),NYTCL-8082(365)
L2476426-04A	Vial MeOH preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260HLW-R2(14)
L2476426-04B	Vial water preserved	Α	NA		4.2	Υ	Absent	31-DEC-24 01:52	NYTCL-8260HLW-R2(14)
L2476426-04C	Vial water preserved	Α	NA		4.2	Υ	Absent	31-DEC-24 01:52	NYTCL-8260HLW-R2(14)
L2476426-04D	Plastic 120ml unpreserved	Α	NA		4.2	Υ	Absent		TS(7)
L2476426-04E	Glass 250ml/8oz unpreserved	Α	NA		4.2	Υ	Absent		NYTCL-8270(14),NYTCL-8082(365)
L2476426-05A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2476426-05B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2476426-05C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2476426

Report Date: 01/27/25

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2476426-05D	Amber 100ml unpreserved	Α	7	7	4.2	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2476426-05E	Amber 100ml unpreserved	Α	7	7	4.2	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2476426-05F	Amber 120ml unpreserved	Α	7	7	4.2	Υ	Absent		NYTCL-8082-LVI(365)
L2476426-05G	Amber 120ml unpreserved	Α	7	7	4.2	Υ	Absent		NYTCL-8082-LVI(365)

Project Name: Lab Number: 52-54 CANAL ST LYONS L2476426 **Report Date: Project Number:** 037112 01/27/25

GLOSSARY

Acronyms

EPA

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

 Environmental Protection Agency. LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyle ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:52-54 CANAL ST LYONSLab Number:L2476426Project Number:037112Report Date:01/27/25

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:01272510:52

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426
Project Number: 037112 Report Date: 01/27/25

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:01272510:52

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 27

Page 1 of 2

Published Date: 01/24/2025

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270E:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

MADEP-APH.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

 ${\sf EPA~180.1, SM2130B, SM4500Cl-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B}$

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

Document Type: Form Pre-Qualtrax Document ID: 08-113

Serial_No:01272510:52

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 27

Published Date: 01/24/2025

Page 2 of 2

Certification IDs:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANAB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker Wi Tonawanda, NY 14150: 275 Coo	ay.	5	Page [of	1		Data j in 1		2/3	1/2	+		ALPHA JOB # LJ476420 Billing Information				
8 Walkup Dr. TEL: 508-698-9220 FAX: 506-898-9193	320 Forbes Blvd TEL: 508-822-9300 FAX: 508-622-3288	Project Name: 52 - 5	4 Canal	St. Lyon	os, New	Brk		ASP-	A S (1 File)		ASP-			Same as Client Info				
Client Information		Project # 03711a					-	Other	_			_	_	40-20-Million (1900)				
Client: Mantrosc	Environmental	(Use Project name as Pro		111			100		Requiren	_				Disposal Site Information				
Address: 1005. C.		Project Manager: Kov	herine 1	NELSON			-	NY TO		-	NY Pa			Please identify below location of applicable disposal facilities.				
Suite 2330 P	Jochester NY	ALPHAQuote #:					-		Standards	_	NY CF	-51						
Phone: 585 - 44	7-3109	Turn-Around Time	(52)				- Armed		stricted Us	-	Other			Disposal Facility:				
Fax:	4	Standard		Due Date:			-		restricted				- 1	□ nn 🕅 na				
		Rush (only if pre approved)		# of Days:		_	-	_	lewer Disc	narge		_	_	Other:				
These samples have be Other project specific							ANA	YSIS	-		1			Sample Filtration				
Please specify Metals							(8360)		5 (8082)	/		/		□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)				
ALPHA Lab ID			Colle	ection	Sample	Sampler's	Vocs	0	00		X	0						
(Lab Use Only)	Sa	ample ID	Date	Time	Matrix	Initials	100	30	0		1X	K.	-	Sample Specific Comments				
76426- 01	EB-02		12/30/24	10520	50	RM	X	X	X	1	10	1		5				
	FD-01		12/30/24		50	RM	X	X	X	1/	-	19		5				
- 03	65W-03		12/30/24	10:30	50	RM	×	X	X		- 1	3		5				
- 04	ESW-04		12/30/24		30	RM	X	X	X			1	1	5				
05	Economent Ble	anh	12/30/24		861 W	RM	X	Λ	K			- 1	1	7				
	unused by	ottles			741				1111					X)				
			Air	2/30/	4													
2	Anna di sana di Sala									-	-							
A = None B = HCI					Cor	ntainer Type	VP	A	A					Please print clearly, legibly and completely. Samples can				
$C = HNO_3$ $D = H_2SO_4$ E = NaOH	V = Vial G = Glass B = Bacteria Cup		F	reservative	A,F	A	A					not be logged in and turnaround time clock will not start until any ambiguities are						
F = MeOH	C = Cube	Relinquished	Ву:	, Date	/Time		Recei	ved By	r:		Date	/Time		resolved, BY EXECUTING				
$G = NaHSO_4$ $H = Na_2S_2O_3$ K/E = Zn Ac/NaOH	O = Other E = Encore D = BOD Bottle	Ryan MAN . 12 SECURE STORKE	E PACE	12/30/2	1522	Secure	URE STORAGE KE 12/30/24 1316 Man ROCH, J. C. (2/30/24 1522						_	THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S				
O = Other		Rodl ho	1	1235-24		1	To the state of th					TERMS & CONDITIONS.						
Form No: 01-25 HC (rev. 3	0-Sept-2013)	Rest for finding				(10	ili	1		1/2	231	-24	0 1	(See reverse side.)				

Service Request No:R2500577

Frank Thomas
Sessler Environmental Services
1330 Research Forest
Macedon, NY 14502

Laboratory Results for: 52-54 Canal Street

Dear Frank,

Enclosed are the results of the sample(s) submitted to our laboratory January 16, 2025 For your reference, these analyses have been assigned our service request number **R2500577**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7475. You may also contact me via email at Meghan.Pedro@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Meghan Pedro Project Manager

CC: Eric Hoban

Narrative Documents

Client: Sessler Environmental Services Service Request: R2500577

Project: 52-54 Canal Street Date Received: 01/16/2025

Sample Matrix: NonAq Liquid

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

One nonaq liquid sample was received for analysis at ALS Environmental on 01/16/2025. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Semivoa GC:

Method 8082A, 01/24/2025: The control limit was exceeded for one or more surrogates in the Continuing Calibration Verification (CCV). The surrogates were within acceptance limits for the associated field samples. The data quality was not significantly affected and no further corrective action was taken.

	Medrae Pedro			
Approved by	S	Date	01/27/2025	

Sample Receipt Information

Client: Sessler Environmental Services Service Request:R2500577

Project: 52-54 Canal Street/24-E016

SAMPLE CROSS-REFERENCE

 SAMPLE #
 CLIENT SAMPLE ID
 DATE
 TIME

 R2500577-001
 Hydraulic Oil
 1/16/2025
 0900

Λ
45
(ALS)

Chain of Custody / Analytical Request Form

73	32	9	6
----	----	---	---

SR#:	·	

(ALS)	1565 Jefferson Road, B	uilding 300, S	ouite 360) ● Rochest	er, NY 14623	3 ● +	-1 58	35 28	38 5	380	 a 	sglo	bal.	com				Page	5		of	
	Report To:			MUST BE COM NT / SAMPLER	PLETED BY THE	Pr	eserv	ative				0										0. None
Company: 5	Sel Englishman	Project Name:		(Canal	Street				•TCLP	LP				-	Filter							1. HCl
- Can	le Thomas		24.		1			4⊕T	• TCLP	TCLP				Lab Fi							2. HNO3	
Felon	sesessleranu.Los	ALS Quote #:			GW	.		624•524	625	•		م	Total - Select Below	d / In-Lab					, i		3. H2SO4	
Phone: 	(17-5710	Sampler's Signa	ture:	and V	Lours	sw	ner) • 62	• 0.	809		• TCLP	ect B	- Field							4. NAOH
Address: 133	D Research Fore	Email CC:				DW S	Containers		8260•	- 8270	8081 •	809	8151	- Sel	lved							5. Zn Acet.
m	20 Research Forces	Email CC:				NA NA	5	۱ ۲	VOA -	SVOA	•	•	٠, ا	otal	Dissolved					.		6. MeOH
·	<u> </u>	(Circle o	· ••••••	NY, MA, PA, CT	, Other:	_≼) je	MS/MSD	1S V	15 51	Pesticides	- 8082	Herbicides								. I	7. NaHSO4
(ALS)		e Collection I	nformation	on: Date	Time	Matrix	Number	1S/N	GC/MS	GC/MS	esti	PCBs	erbi	Metals,	Metals,							8. Other
(,,,,	Sample I				7:00	2	<u>Z</u>	2	9	9	ط	Ϋ́	=	2	2	-				\dashv	\dashv	Notes:
	Hydraulie oi	(1/16	1.00	-	-														-	
													-								\dashv	
 						 	 	-													\neg	
İ																						
			;																			
						$oxed{igspace}$																
							ļ			<u> </u>	:				Ĺ							
Special Instruc	tions / Comments:				TurnarounRush (Surc				ts	R	epor	t Rec	uire	men	ts	Meta	als: RC	RA Bel	PP 13•	TAL 23	TCLP	Other (List)
					*Subject to Avail *Please Check w	ability	•				_	II/Cat . IV/Cat			(C			A Rep			L • BT(EX • TCLP •
					Standard	(10 Bu	ısines	s Days)	,	Valida	_	Report						ce To): (o	Same	as F	Report To)
				Date Required:					EDD:		Yes _	_N	0		PO #:				<u>o!</u>			
	····		<u> </u>				1			EDD	Гуре:	<u>'</u>				Conta	eany: «	<u>Ses</u>	علكة	x E	<u>u</u>	issuurutal
	Relinoutshed By:	Beceived By:	Relin	quished By:	Received By	/ :	 	Relin	quishe	ed By:			Receiv	ed By	:		<u></u>	100	4	Ju	5/12	Marullo
Signature Printed Name	Jun 1 1	athus Under					-	R	25(500577 5				Phone: AP@Sesslerenu.com								
Compan		LS							Cenal							Addre	255:					
Date/Tim	1 1 1 1	16/25/4:40			Page 6 of 2	20				1111111	1111 6 6),			11 1881	 	_						
	a ke. will and analysis.	-																			_	20421 4166

rojeci/Ciie	nt <u></u>	ler Env	·		_rolder M					•	,		>	-
Cooler receive	ed on 1/16/2	<u>5</u> . t	y: <u>//</u>	u	CO	URIER:					CITY	CLIEN		
1 Were Cus	stody seals on	outside of cooler	?	,	Y (N) 5a	Did V	OA vial	s have	sig* bub	bles?			Y	MA) N
1	=	ly completed (ink		d)? (Y) N 5b	Sig* b	ubbles:	Alk	? Y N	INA		lfide?		N (NA)
		good condition (Where	did the	bottles	originat	e? (ALS/R		CLIE	
4 Circle: V	Wet Ice Dry	Ice Gel packs	prese	nt?	Y 🐧 7	Soil V	OA rece	eived as	: Bu	ılk En	core	5035s	et C	NA)
. Temperatur	e Readings	Date: 1/16/	25	Time:	14:52	ID:	IR#12	IR#1	D	From	Temp	Blank	Sa	mple Bottle
Temp (°C)		9.8		·								 		
Within 0-6°C	C?	Y (V)	·		N Y		<u>Y</u>	N		N		N	Y	
If <0°C, wer	e samples froze	en? Y N		Υ	N Y	N	Y	N		N escribed		<u>N </u>	Y	N Day Rule
All samples	held in storage	un Samples: e location: orage location:		o _ b	y hu			4152		8 hours o			Y	N
CONTRACTOR AND	NORTH AND LONG AND	and the second s	1000	de lavor	en e regulation de	O Leone A	EMONET.	e Political	The of Carlot No.	active section of	1947 E 24 D	i i i i i i i i i i i i i i i i i i i	tr200	THE MEDICAN STATES
9. V	Were all bottle l	labels complete (i.e. ana	lysis, į	oreservation,			ES	NO	MU				
10. II 11. V 12. V 13. V	Did all bottle la Were correct co Were 5035 vial: Were dissolved	labels complete (bels and tags agro ntainers used for acceptable (no metals filtered in	i.e. ana ee with the tes extra la the fie	lysis, p custo- ts indi bels, r ld?	preservation, dy papers? cated? not leaking)?	etc.)?		ES ES ES ES (ES	NO NO NO (NO	/A //A ediar® B	ags Infl			
10. II 11. V 12. V 13. V	Did all bottle la Were correct co Were 5035 vial: Were dissolved	labels complete (bels and tags agre ontainers used for s acceptable (no	i.e. ana ee with the tes extra la the fie	lysis, personal custon to indicate the second to the second term of th	preservation, dy papers? cated? not leaking)?	etc.)? N Canis		ES ES ES ES ES Samp	NO NO NO NO NO T I T	/A /A edlar® B Vol.	ags Infl	ated t		Final
10. II 11. V 12. V 13. V	Did all bottle la Were correct co Were 5035 vial: Were dissolved Air Samples: C	labels complete (bels and tags agrontainers used for acceptable (no metals filtered in assettes / Tubes	i.e. ana ee with the tes extra la the fie Intact Y	lysis, personal custon to indicate the second to the second term of th	preservation, dy papers? cated? tot leaking)? with MS Y / N	etc.)? N Canis	Sters Pre	ES ES ES ES (ES ssurize	NO NO NO NO NO T I T	/A //A ediar® B	ags Infl			Final pH
10. II 11. V 12. V 13. V	Did all bottle la Were correct co Were 5035 vials Were dissolved Air Samples: C Lot of test	labels complete (bels and tags agrontainers used for acceptable (no metals filtered in assettes / Tubes	i.e. ana ee with the tes extra la the fie Intact Y	lysis, custo custo ts indi bels, r id?	preservation, dy papers? cated? tot leaking)? with MS Y / N	etc.)? N Canis	Sters Pre	ES ES ES ES ES Samp	NO NO NO NO NO T I T	/A /A edlar® B Vol.	ags Infl			1
10. II 11. V 12. V 13. V 14. A	Did all bottle la Were correct co Were 5035 vials Were dissolved Air Samples: C Lot of test	labels complete (bels and tags agrontainers used for seceptable (no metals filtered in assettes / Tubes Reagent NaOH HNO3	i.e. ana ee with the tes extra la the fie Intact Y	lysis, custo custo ts indi bels, r id?	preservation, dy papers? cated? tot leaking)? with MS Y / N	etc.)? N Canis	Sters Pre	ES ES ES ES ES Samp	NO NO NO NO NO T I T	/A /A edlar® B Vol.	ags Infl			1
10. II 11. V 12. V 13. V 14. A Limits pH≥12	Did all bottle la Were correct co Were 5035 vials Were dissolved Air Samples: C Lot of test	labels complete (bels and tags agrontainers used for acceptable (no metals filtered in assettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄	i.e. ana ee with the tes extra la the fie Intact Y	lysis, custo custo ts indi bels, r id?	preservation, dy papers? cated? tot leaking)? with MS Y / N	etc.)? N Canis	Sters Pre	ES ES ES ES ES Samp	NO NO NO NO NO T I T	/A /A edlar® B Vol.	ags Infl			1
10. II 11. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Did all bottle la Were correct co Were 5035 vials Were dissolved Air Samples: C Lot of test	labels complete (bels and tags agrontainers used for acceptable (no metals filtered in assettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ 522 NaHSO ₄	i.e. ana ee with the tes extra la the fie Intact Y	lysis, custo custo ts indi bels, r id?	preservation, dy papers? cated? not leaking)? with MS Y / N Lot Receive	N Canis	Sters Pre	ES ES ES ES ES Samp	NO NO NO NO NO T I T	/A /A edlar® B Vol.	ags Infl			1
10. II 11. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Did all bottle la Were correct co Were 5035 vials Were dissolved Air Samples: C Lot of test	labels complete (bels and tags agrontainers used for sacceptable (no metals filtered in assettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ 522 NaHSO ₄ For 608pest	i.e. ana ee with the tes extra la the fie Intact Y	lysis, custo custo ts indi bels, r id?	preservation, dy papers? cated? not leaking)? with MS Y / N Lot Receive No=Notify fi	N Canised	Sters Pre	ES ES ES ES ES Samp	NO NO NO NO NO T I T	/A /A edlar® B Vol.	ags Infl			1
10. II 11. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Did all bottle la Were correct co Were 5035 vials Were dissolved Air Samples: C Lot of test	labels complete (bels and tags agrontainers used for sacceptable (no metals filtered in assettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ 522 NaHSO ₄ For 608pest For CN,	i.e. ana ee with the tes extra la the fie Intact Y	lysis, custo custo ts indi bels, r id?	preservation, dy papers? cated? not leaking)? with MS Y / N Lot Receive No=Notify filf+, contact I	N Canised or 3day	Sters Pre	ES ES ES ES ES Samp	NO NO NO NO NO T I T	/A /A edlar® B Vol.	ags Infl			1
10. II 11. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Did all bottle la Were correct co Were 5035 vials Were dissolved Air Samples: C Lot of test	labels complete (bels and tags agrontainers used for sacceptable (no metals filtered in assettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ 522 NaHSO ₄ For 608pest For CN, Phenol, 625,	i.e. ana ee with the tes extra la the fie Intact Y	lysis, custo custo ts indi bels, r id?	preservation, dy papers? cated? not leaking)? with MS Y / N Lot Receive No=Notify for If +, contact I Na ₂ S ₂ O ₃ (625	N Canised or 3day PM to add 6, 608,	Sters Pre	ES ES ES ES ES Surize Samp	NO NO NO NO NO T I T	/A /A edlar® B Vol.	ags Infl			1
10. II 11. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Did all bottle la Were correct co Were 5035 vials Were dissolved Air Samples: C Lot of test	labels complete (bels and tags agrontainers used for acceptable (no metals filtered in assettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ 522 NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522	i.e. ana ee with the tes extra la the fie Intact Y In Lim Yes	lysis, custo custo ts indibels, rold? //N	preservation, dy papers? cated? not leaking)? with MS Y / N Lot Receive No=Notify filf+, contact I	N Canised or 3day PM to add 6, 608,	Sters Pre	ES ES ES ES ES Surize Samp	NO NO NO NO NO T I T	/A /A edlar® B Vol.	ags Infl			1
10. II 11. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Did all bottle la Were correct co Were 5035 vials Were dissolved Air Samples: C Lot of test	labels complete (bels and tags agrontainers used for acceptable (no metals filtered in assettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ 522 NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃	i.e. ana ee with the tes extra la the fie Intact Y Yes	lysis, custo custo ts indi bels, r id?	preservation, dy papers? cated? not leaking)? with MS Y / N Lot Receive No=Notify for If +, contact I Na ₂ S ₂ O ₃ (625	N Canised or 3day PM to add 6, 608,	Sters Pre	ES ES ES (ES ssurize Samp Adjus	NO NO NO NO NO NO NO T Ie ID sted	/A edlar® B Vol. Added	ags Infl	t Addec		1
10. II 11. V 12. V 13. V 14. A Limits pH ≥12 pH ≤2 pH ≤2 pH ≤4 pH 5-9 Residual Chlorine	Did all bottle la Were correct co Were 5035 vials Were dissolved Air Samples: C Lot of test	labels complete (bels and tags agrontainers used for acceptable (no metals filtered in assettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ 522 NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate	i.e. ana ee with the tes extra la the fie Intact Y In Lim Yes	lysis, custo custo ts indi bels, rold? // N vits? No	preservation, dy papers? cated? not leaking)? with MS Y / N Lot Receive No=Notify for If +, contact I Na ₂ S ₂ O ₃ (625	N Canised or 3day PM to add 6, 608,	Sters Pre	ES ES ES (ES Samp Adjus	NO NO NO NO NO T I e ID sted	7A PA edlar® B Vol. Added	ags Infl Lo	t Addec	lysis.	pΗ
10. II 11. V 12. V 13. V 14. A Limits pH ≥12 pH ≤2 pH ≤2 pH ≤4 pH 5-9 Residual Chlorine	Did all bottle la Were correct co Were 5035 vials Were dissolved Air Samples: C Lot of test	labels complete (bels and tags agrontainers used for acceptable (no metals filtered in assettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ 522 NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃	i.e. ana ee with the tes extra la the fie Intact Y Yes	lysis, custo custo ts indibels, rold? //N	preservation, dy papers? cated? not leaking)? with MS Y / N Lot Receive No=Notify for If +, contact I Na ₂ S ₂ O ₃ (625	N Canised or 3day PM to add 6, 608,	Sters Pre	ES ES ES (ES Samp Adjust	NO NO NO NO NO NO T I e ID sted	7A PA edlar® B Vol. Added	ags Infl Lo	efore ana	lysis.	1
10. II 11. \ 12. \ 13. \ 14. \ Limits pH ≥12 pH ≤2 pH ≤2 pH <4 pH 5-9 Residual Chlorine (-)	Oid all bottle la Were correct co Were 5035 vial: Were dissolved Air Samples: C Lot of test paper	labels complete (bels and tags agrontainers used for acceptable (no metals filtered in assettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ 522 NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	i.e. ana ee with the tes extra la the fie Intact Y In Lim Yes **	lysis, custo custo ts indi bels, rold? // N vits? No	preservation, dy papers? cated? not leaking)? with MS Y / N Lot Receive No=Notify for If +, contact I Na ₂ S ₂ O ₃ (625	N Canised or 3day PM to add 6, 608,	Sters Pre	ES ES ES (ES Samp Adjust	NO NO NO NO NO NO T I E ID sted	Added Added 64 Not to bottles of all	ags Infl Lo	efore ana	lysis.	pΗ
10. II 11. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Did all bottle la Were correct co Were 5035 vial: Were dissolved Air Samples: C Lot of test paper	labels complete (bels and tags agrontainers used for acceptable (no metals filtered in assettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ 522 NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate	i.e. ana ee with the tes extra la the fie Intact Y In Lim Yes **	lysis, custo custo ts indi bels, rold? // N vits? No	preservation, dy papers? cated? not leaking)? with MS Y / N Lot Receive No=Notify for If +, contact I Na ₂ S ₂ O ₃ (625	N Canised or 3day PM to add 6, 608,	Sters Pre	ES ES ES (ES Samp Adjust	NO NO NO NO NO NO T I E ID sted	Added Added 64 Not to bottles of all	ags Infl Lo	efore ana	lysis.	pΗ
10. I 11. V 12. V 13. V 14. A Limits pH ≥12 pH ≤2 pH ≤2 pH <4 pH 5-9 Residual Chlorine (-)	Did all bottle la Were correct co Were 5035 vial: Were dissolved Air Samples: C Lot of test paper	labels complete (bels and tags agrontainers used for acceptable (no metals filtered in assettes / Tubes Reagent NaOH	i.e. ana ee with the tes extra la the fie Intact Y In Lim Yes **	lysis, custo custo ts indi bels, rold? // N vits? No	preservation, dy papers? cated? not leaking)? with MS Y / N Lot Receive No=Notify for If +, contact I Na ₂ S ₂ O ₃ (625	N Canised or 3day PM to add 6, 608,	Sters Pre	ES ES ES (ES Samp Adjust	NO NO NO NO NO NO T I E ID sted	Added Added 64 Not to bottles of all	ags Infl Lo	efore ana	lysis.	pΗ

HPROD	BULK
HTR	FLDT
SUB	HGFB
ALS	LL3541

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

Miscellaneous Forms

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a
 Tentatively Identified Compound (TIC) or
 that the concentration is between the MRL
 and the MDL. Concentrations are not verified
 within the linear range of the calibration. For
 DoD: concentration >40% difference between
 two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

P:\INTRANET\QAQC\Forms Controlled\QUALIF routine rev 8.doc

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Accreditations¹

NELAP States
Florida ID # E87674
New Hampshire ID # 2941
New York ID # 10145
Pennsylvania ID# 68-786
Texas ID#T104704581
Virginia #460167

Non-NELAP States
Connecticut ID #PH0556
Delaware Approved
Maine ID #NY01587
North Carolina #36701
North Carolina #676
Rhode Island LAO00333

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory. To verify NH accredited analytes, go to https://www4.des.state.nh.us/CertifiedLabs/Certified-Method.aspx.

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Analyst Summary report

Client: Sessler Environmental Services

Project: 52-54 Canal Street/24-E016

Service Request: R2500577

 Sample Name:
 Hydraulic Oil
 Date Collected:
 01/16/25

 Lab Code:
 R2500577-001
 Date Received:
 01/16/25

Sample Matrix: NonAq Liquid

Analysis Method Extracted/Digested By Analyzed By

8082A KPROCOPIO AFELSER

PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

INORGANIC

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C or 6010D	3005A/3010A
6020A or 6020B	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-N-2016	SM 4500-CN-G and
Amenable and Residual	SM 4500-CN-B,C-2016
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation
	Method
6010C or 6010D	3050B
6020A or 6020B	3050B
6010C or 6010D TCLP	3005A/3010A
(1311) extract	
6010C or 6010D SPLP	3005A/3010A
(1312) extract	
7199	3060A
300.0 Anions/ 350.1/ 353.2/	DI extraction
SM 2320B/ SM 5210B/	
9056A Anions	
For analytical methods not listed, the	
method is the same as the analytical	method reference.

ORGANIC

Preparation Methods for Organic methods are listed in the header of the Results pages.

Regarding "Bulk/5035A":

For soil/solid samples submitted in soil jars for Volatiles analysis, the prep method is listed as "Bulk/5035A". The lab follows the closed-system EPA 5035A protocols once the sample is transferred to a sealed vial, but collection in bulk in soil jars does not follow the collection protocols listed in EPA 5035A. In accordance with the NYSDOH technical notice of October 2012, all results or reporting limits <200 ug/kg are to be considered estimated due to potential low bias.

Sample Results

Semivolatile Organic Compounds by GC

Analytical Report

Client:Sessler Environmental ServicesService Request:R2500577Project:52-54 Canal Street/24-E016Date Collected:01/16/25 09:00

Sample Matrix: NonAq Liquid Date Received: 01/16/25 14:40

Sample Name: Hydraulic Oil Units: ug/Kg

Lab Code: R2500577-001 Basis: As Received

Polychlorinated Biphenyls (PCBs) by GC

Analysis Method: 8082A **Prep Method:** EPA 3580A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	1900 U	1900	1	01/24/25 01:48	1/23/25	
Aroclor 1221	3800 U	3800	1	01/24/25 01:48	1/23/25	
Aroclor 1232	1900 U	1900	1	01/24/25 01:48	1/23/25	
Aroclor 1242	1900 U	1900	1	01/24/25 01:48	1/23/25	
Aroclor 1248	1900 U	1900	1	01/24/25 01:48	1/23/25	
Aroclor 1254	1900 U	1900	1	01/24/25 01:48	1/23/25	
Aroclor 1260	1900 U	1900	1	01/24/25 01:48	1/23/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	93	44 - 154	01/24/25 01:48	
Tetrachloro-m-xylene	59	42 - 143	01/24/25 01:48	

QC Summary Forms

Semivolatile Organic Compounds by GC

QA/QC Report

Client: Sessler Environmental Services Service Request: R2500577

Project: 52-54 Canal Street/24-E016

Sample Matrix: NonAq Liquid

SURROGATE RECOVERY SUMMARY Polychlorinated Biphenyls (PCBs) by GC

Analysis Method: 8082A **Extraction Method:** EPA 3580A

		Decachlorobiphenyl	Tetrachloro-m-xylene
Sample Name	Lab Code	44 - 154	42 - 143
Hydraulic Oil	R2500577-001	93	59
Method Blank	RQ2500874-01	86	103
Lab Control Sample	RQ2500874-02	107	113
Duplicate Lab Control Sample	RQ2500874-03	88	101

Analytical Report

Client: Sessler Environmental Services Service Request: R2500577

Project: 52-54 Canal Street/24-E016 Date Collected: NA

Sample Matrix: NonAq Liquid Date Received: NA

Sample Name: Method Blank Units: ug/Kg

Lab Code: RQ2500874-01 Basis: As Received

Polychlorinated Biphenyls (PCBs) by GC

Analysis Method: 8082A **Prep Method:** EPA 3580A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	2000 U	2000	1	01/24/25 00:54	1/23/25	
Aroclor 1221	4000 U	4000	1	01/24/25 00:54	1/23/25	
Aroclor 1232	2000 U	2000	1	01/24/25 00:54	1/23/25	
Aroclor 1242	2000 U	2000	1	01/24/25 00:54	1/23/25	
Aroclor 1248	2000 U	2000	1	01/24/25 00:54	1/23/25	
Aroclor 1254	2000 U	2000	1	01/24/25 00:54	1/23/25	
Aroclor 1260	2000 U	2000	1	01/24/25 00:54	1/23/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	86	44 - 154	01/24/25 00:54	_
Tetrachloro-m-xylene	103	42 - 143	01/24/25 00:54	

QA/QC Report

Client: Sessler Environmental Services
Project: 52-54 Canal Street/24-E016

Sample Matrix:

52-54 Canal Street/24-E NonAq Liquid **Service Request:** R2500577 **Date Analyzed:** 01/24/25

Duplicate Lab Control Sample Summary Polychlorinated Biphenyls (PCBs) by GC

Units:ug/Kg

Basis: As Received

Lab Control Sample

Duplicate Lab Control Sample

RQ2500874-02

RQ2500874-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Aroclor 1016	8082A	6420	5000	128	5590	5000	112	47-159	14	30
Aroclor 1260	8082A	6210	5000	124	5740	5000	115	46-151	8	30

QUALITY ASSURANCE REVIEW FOR

52-54 Canal Street Lyons, New York

LABORATORY SAMPLE DELIVERY GROUPS: L2476274 AND L2476426

February 2025

Prepared for:

Wayne County Regional Land Bank

16 Williams Street Lyons, NY 14489

Prepared by:

MONTROSE ENVIRONMENTAL SOLUTIONS, INC.

1140 Valley Forge Road P.O. Box 810 Valley Forge, PA 19482-0810

TABLE OF CONTENTS

Introduction

Section 1 Quality Assurance Review

A. Organic Review

B. Conclusions

Section 2 Qualified Analytical Results

Section 3 Laboratory Case Narratives

Section 4 Chain-of-Custody Records, Receipt Information, and Project Correspondence

Introduction

This quality assurance (QA) review (a.k.a., data validation) is based upon an examination of the data generated from the analyses of the soil and associated quality control (QC) samples collected on December 27 and 30, 2024, at 52-54 Canal Street in Lyons, NY. The samples that have undergone review are listed on Table 1. Table 1 also presents the laboratory sample identification numbers, Sample Delivery Group (SDG) numbers, matrices, collection dates, and parameter(s) examined. The review was performed by Montrose Environmental Solutions, Inc. (Montrose) under contract with the Wayne County Land Bank, Lyons, NY. Wayne County Regional Land Bank Corporation has performed this work under its United States Environmental Protection (US EPA) Brownfields Multi-Purpose Grant (Cooperative Agreement No. 4BF-96219623).

One hundred percent (100%) of the analytical data associated with SDG L2476274 and SDG L2476426 was validated at a Stage 2a, full review level, inclusive of QC summary forms. The analyses performed include volatile organic compounds (VOC), semivolatile organic compounds (SVOC), SVOC by select ion monitoring (SIM), and polychlorinated biphenyls (PCBs) by the United States Environmental Protection Agency (US EPA) and the Office of Solid Waste's (SW-846) methods.

This data validation review was performed with guidance from the "US EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," (US EPA, November 2020); and, "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," (US EPA, January 2009). The National Functional Guidelines specifically address analyses performed in accordance with the Contract Laboratory Program (CLP) analytical methods. These validation guidelines are, therefore, not completely applicable to the types of analyses and analytical protocols performed for these samples. Montrose used professional judgment to determine the usability of the analytical results and compliance relative to the analytical methods referenced by the laboratory. In the absence of US EPA data review guidance or analytical method requirements, laboratory generated acceptance criteria were used.

Details of the QA review are presented in this report. Data were examined to determine the usability of the analytical results and compliance relative to the requirements specified in the analytical methods. In addition, the deliverables were evaluated for completeness and accuracy.

This report was prepared to provide a critical review of the laboratory analyses and reported analytical results. Rigorous QA reviews of laboratory-generated data routinely identify problems associated with analytical measurements, even from the most experienced and capable laboratories.

TABLE 1 SAMPLES INCLUDED IN THIS QUALITY ASSURANCE REVIEW

Laboratory Sample ID	SDG	Sample ID	Matrix	Sample Date	Analysis
L2476274-01	L2476274	EB-01	SS	12/27/2024	VOC, SVOC, PCB
L2476274-02	L2476274	ESW-01	SS	12/27/2024	VOC, SVOC, PCB
L2476274-03	L2476274	ESW-02	SS	12/27/2024	VOC, SVOC, PCB
L2476426-01	L2476426	EB-02	SS	12/30/2024	VOC, SVOC, PCB
L2476426-02	L2476426	FD-01	SS	12/30/2024	VOC, SVOC, PCB
L2476426-03	L2476426	ESW-03	SS	12/30/2024	VOC, SVOC, PCB
L2476426-04	L2476426	ESW-04	SS	12/30/2024	VOC, SVOC, PCB
L2476426-05	L2476426	Equipment Blank	AQ	12/30/2024	VOC, SVOC, SIM, PCB

NOTES:

VOC - VOC by SW-846 Method 8260D (8 analyses) SVOC - SVOC by SW-846 Method 8270E (8 analyses)

SIM - SVOC Select Ion Monitoring by SW-846 Method 8270E SIM (1 analysis)
PCB - Polychlorinated Biphenyls (PCBs) by SW-846 Method 8082A (8 analyses)

SS - Soil AQ - Aqueous

Quality Assurance Review

A. Organic Review

The analyses of six soils and associated QC samples collected at the 52-54 Canal Street site in Lyons, NY by Montrose, were performed by Pace Analytical Services in Westborough, MA. The samples were analyzed for VOC by SW-846 Method 8260D, SVOC by SW-846 Method 8270E, and PCB by SW-846 Method 8082A. In addition, the equipment blank was analyzed for SVOC SIM by SW-846 Method 8270E with SIM. The specific samples and analyses reviewed are identified on Table 1. Table 1 also presents the laboratory sample identification (ID) numbers, SDG numbers, matrices, collection dates, and parameter(s) examined.

The findings in this report are based upon a review of, but not limited to, sample holding times, condition of samples upon laboratory receipt, blank analysis results, laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) results, matrix spike (MS) and matrix spike duplicate (MSD) results, surrogate recoveries, and laboratory and field duplicate results.

Issues are typically presented in two categories - deliverable issues and procedural issues. Deliverable issues are data issues that can easily be corrected and that may or may not impact the usability of the reported results. Procedural issues are issues that cannot be corrected and address method compliance issues; these issues may or may not impact the usability of the reported results. Comments are offered for clarification of issues relating to the data and do not typically impact the usability of the reported results. The following issues and comments do not necessarily affect data usability (*viz.*, items necessitating data qualification).

Deliverable Review

1. The laboratory qualifiers were removed and replaced with data validation qualifiers as deemed necessary by the data reviewer.

Comments

 The SDG L2476274 samples arrived in good condition with proper preservation on December 28, 2024. The cooler temperature at the time of receipt was 2.5°C. The SDG L2476426 samples arrived in good condition with proper preservation on December 31, 2024. The cooler temperature at the time of receipt was 4.2°C.

Organic Data Qualifiers

Based upon a Stage 2a review of the data packages provided, organic data qualification was warranted. The principal areas of concern are method blank contamination, and out-of-criteria LCS/LCSD, and MS/MSD recoveries.

Data usability issues represent an interpretation of the QC results obtained for the project samples. Quite often, data qualifications address issues relating to sample matrix problems. Similarly, the validation guidelines specify areas of the data that require qualification, yet the methods used for analysis do not require any corrective action by the laboratory. Accordingly, the data usability issues should not necessarily be construed as an indication of laboratory performance.

The following organic data qualifiers are presented.

Method Blank contamination:

SDG	Qualified Samples	Analyte	Qualifier	Qualification
L2476426	Equipment Blank	benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, dibenz(a,h)anthracene, and indeno(g,h,i)perylene	U*	Method blank

Benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, dibenzo(a,h)anthracene, and indeno(g,h,i)perylene were detected in the method blank. The reported concentrations for benzo(k)fluoranthene, benzo(b)fluoranthene, benzo(g,h,i)perylene, dibenzo(a,h)anthracene, and indeno(g,h,i)perylene in sample Equipment Blank were less than five times the method blank concentration and should be considered "not-detected" due to potential laboratory contamination. The associated sample results have been flagged "U*".

LCS/LCSD Accuracy and Precision:

SDG	Qualified Samples	Analyte	Qualifier	Qualification
L2476274	EB-01, ESW-01, and ESW-02	1,4-dioxane	J-/UJ-	Low LCS and/or LCSD recoveries
L2476426	EB-02, FD-01, ESW-03, and ESW-04	3,3'-dichlorobenzidine, aniline, and 4-chloroaniline	J-/UJ-	Low LCS and/or LCSD recoveries
L2476426	Equipment Blank	hexachlorocyclopentadiene, and aniline	J-/UJ-	Low LCS and/or LCSD recoveries and high RPD

The ability of the laboratory to accurately quantify 1,4-dioxane in samples EB-01, ESW-01 and ESW-02 was not demonstrated, and the results have been qualified as estimated, biased low, and have been flagged "J-

" or "UJ-" depending upon the result reported ("non-detect" results were qualified as "UJ-" and positive results were qualified as "J-"). A low recovery was observed for 1,4-dioxane in the LCS and/or LCSD.

The ability of the laboratory to accurately quantify 3,3'-dichlorobenzidine, aniline, and 4-chloroaniline in samples EB-02, FD-01, ESW-03 and ESW-04 was not demonstrated, and the results have been qualified as estimated, biased low, and have been flagged "J-" or "UJ-" depending upon the result reported ("non-detect" results were qualified as "UJ-" and positive results were qualified as "J-"). A low recovery was observed for 3,3'-dichlorobenzidine, aniline, and 4-chloroaniline in the LCS and/or LCSD.

The ability of the laboratory to accurately quantify hexachlorocyclopentadiene and aniline in the Equipment Blank was not demonstrated, and the results have been qualified as estimated, biased low, and have been flagged "J-" or "UJ-" depending upon the result reported ("non-detect" results were qualified as "UJ-" and positive results were qualified as "J-"). A low recovery was observed for hexachlorocyclopentadiene and aniline in the LCS and/or LCSD.

MS/MSD Accuracy and Precision:

SDG	Qualified Samples	Analyte	Qualifier	Qualification
L2476274	EB-01	methylene chloride, carbon tetrachloride,	J-/UJ-	Low MS and /or MSD recoveries
L2476274	EB-01	n-butylbenzene, 1,2,3-trichlorobenzene, and 1,2,4-trichlorobenzene	J-/UR	Very low MS and /or MSD recoveries

L2476274	EB-01	3,3'-dichlorobenzidine, 2,4-dinitrophenol,	J-/UR	Very low MS and
		and 4,6-dinitro-o-cresol		/or MSD
				recoveries

The ability of the laboratory to accurately quantify methylene chloride, carbon tetrachloride, 1,2-1,1,2-trichloroethane, dichloropropane. dibromochloromethane, tetrachloroethene, chlorobenzene, bromodichloromethane, trans-1,3-dichloropropene, cis-1,3-dichloropropene, bromoform, 1,1,2,2,tetrachloroethane, benzene, toluene, ethylbenzene, trans-1,2-dichloroethene, trichloroethene, 1,2dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, m/p-xylene, o-xylene, cis-1,2-dichloroethene, 1,2,-dibromoethane, sec-butylbenzene, tert-butylbenzene, 2-hexanone, chlrorpropane, isopropylbenzene, p-isopropyltoluene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, cyclohexane, and methyl cyclohexane in sample EB-01 was not demonstrated, and the results have been qualified as estimated, biased low, and have been flagged "J-" or "UJ-" depending upon the result reported ("non-detect" results were qualified as "UJ-" and positive results were qualified as "J-"). Low recoveries were observed for these compounds in the associated MS and/or MSD analyses.

The ability of the laboratory to accurately quantify n-butylbenzene, 1,2,3-trichlorobenzene, and 1,2,4-trichlorobenzene in sample EB-01 was not demonstrated, and the results have been qualified as estimated, biased low, and flagged "J-" or "UR" depending upon the result reported ("non-detect" results were qualified as "UR" and positive results were qualified as "J-"). Very low recoveries (<10%) were observed for these compound in the associated MS and/or MSD analyses.

The ability of the laboratory to accurately quantify 3,3'-dichlorobenzidine, 2,4-dinitrophenol and 4,6-dinitroo-cresol in sample EB-01 was not demonstrated, and the results have been qualified as estimated, biased low, and flagged "J-" or "UR" depending upon the result reported ("non-detect" results were qualified as "UR" and positive results were qualified as "J-"). Very low recoveries (<10%) were observed for these compound in the associated MS and/or MSD analyses

In accordance with project protocols, all results reported at concentrations less than the sample-specific RL (adjusted for dilution factor and sample volume) and above the MDL should be considered estimated and have been flagged "J".

Complete support documentation for this Organic QA review can be provided upon request.

Date: 2/24/2025

B. Conclusions

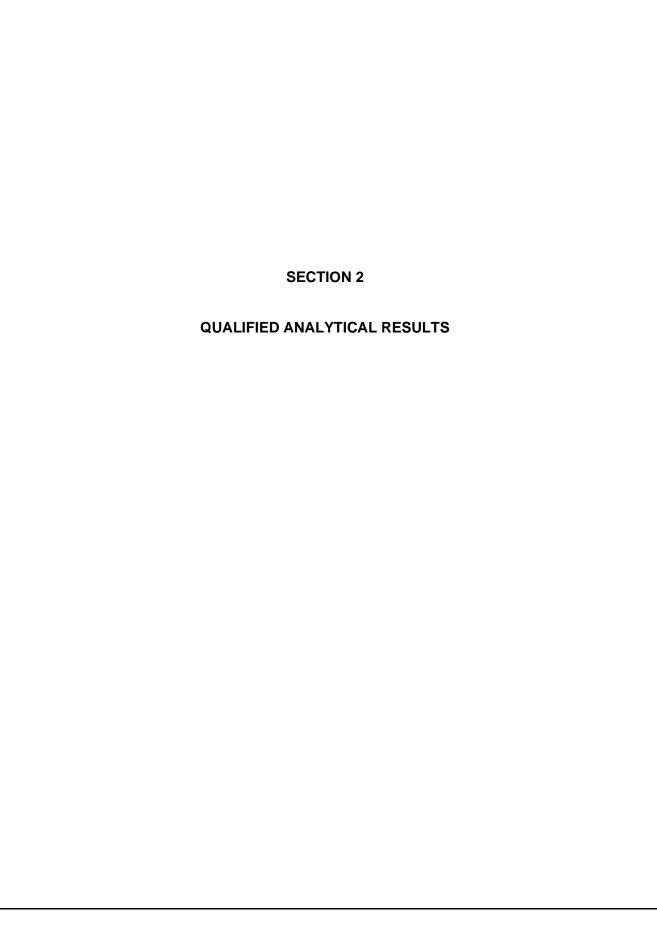
Based upon review of the data packages provided, Organic results were qualified as estimated due to method blank contamination, and out-of-criteria LCS/LCSD and MS/MSD recoveries.

To confidently use any of the analytical data within this sample set, the data user should understand the qualifications and limitations of the results.

As qualified, data collected during the field sampling activities can be used to characterize the site as well as to prepare a residual human health and ecological risk assessment for the Site.

DV Review and Report prepared by: Amy Wall, Quality Assurance Chemist

DV and Report reviewed by: Amy Graham, Quality Assurance Chemist


Report approved by: Adam Doubleday, Quality Assurance Manager

MONTROSE ENVIRONMENTAL SOLUTIONS, INC.

1140 Valley Forge Road P.O. Box 584 Valley Forge, PA 19481-0584

DATA QUALIFIER NOTES

- J Quantitation is approximate due to limitations identified during the data validation.
- J+ The result is an estimated quantity and should be considered biased high.
- J- The result is an estimated quantity and should be considered biased low.
- R Unusable result; compound may or may not be present in sample.
- UJ This compound was not detected, but the quantitation limit may or may not be higher due to a bias identified during data validation.
- UJ- This compound was not detected, but the quantitation limit may be lower due to a bias identified during data validation.
- UR The analyte was reported as not detected, but the determination that the analyte was not present in the sample is unreliable due to serious analytical deficiencies. The presence or absent of the analyte cannot be verified.
- U* This compound should be considered "not-detected" because it was detected in a rinsate blank or laboratory method blank at a similar level.

L2476426

Project Name: 52-54 CANAL ST LYONS

L2476426-01

52-54 CANAL ST, LYONS, NEW YORK

EB-02

Project Number: 037112

SAMPLE RESULTS

Report Date: 01/27/25

Lab Number:

I E DESIII TS

Date Collected: 12/30/24 10:20
Date Received: 12/30/24
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8260D
Analytical Date: 01/05/25 21:32

Analyst: JIC Percent Solids: 97%

Volatile Organics by EPA 5035 Low - West Methylene chloride I,1-Dichloroethane	ND ND ND ND ND ND ND	ug/kg ug/kg	6.1	2.8	1
,1-Dichloroethane	ND ND			2.8	1
,1-Dichloroethane	ND		1.0		
Ohla mafa maa			1.2	0.18	1
Chloroform	ND	ug/kg	1.8	0.17	1
Carbon tetrachloride		ug/kg	1.2	0.28	1
1,2-Dichloropropane	ND	ug/kg	1.2	0.15	1
Dibromochloromethane	ND	ug/kg	1.2	0.17	1
I,1,2-Trichloroethane	ND	ug/kg	1.2	0.33	1
Tetrachloroethene	ND	ug/kg	0.61	0.24	1
Chlorobenzene	ND	ug/kg	0.61	0.16	1
Trichlorofluoromethane	ND	ug/kg	4.9	0.85	1
1,2-Dichloroethane	ND	ug/kg	1.2	0.32	1
I,1,1-Trichloroethane	ND	ug/kg	0.61	0.20	1
Bromodichloromethane	ND	ug/kg	0.61	0.13	1
rans-1,3-Dichloropropene	ND	ug/kg	1.2	0.34	1
cis-1,3-Dichloropropene	ND	ug/kg	0.61	0.19	1
Bromoform	ND	ug/kg	4.9	0.30	1
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.61	0.20	1
Benzene	ND	ug/kg	0.61	0.20	1
Toluene	ND	ug/kg	1.2	0.67	1
Ethylbenzene	ND	ug/kg	1.2	0.17	1
Chloromethane	ND	ug/kg	4.9	1.1	1
Bromomethane	ND	ug/kg	2.4	0.71	1
/inyl chloride	ND	ug/kg	1.2	0.41	1
Chloroethane	ND	ug/kg	2.4	0.55	1
,1-Dichloroethene	ND	ug/kg	1.2	0.29	1
rans-1,2-Dichloroethene	ND	ug/kg	1.8	0.17	1
Trichloroethene	ND	ug/kg	0.61	0.17	1
,2-Dichlorobenzene	ND	ug/kg	2.4	0.18	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-01 Date Collected: 12/30/24 10:20

Client ID: EB-02 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low -	Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	2.4	0.18	1
1.4-Dichlorobenzene	ND		ug/kg	2.4	0.10	1
Methyl tert butyl ether	ND		ug/kg	2.4	0.25	1
p/m-Xylene	ND		ug/kg	2.4	0.69	1
o-Xylene	ND		ug/kg	1.2	0.36	1
Xylenes, Total	ND		ug/kg	1.2	0.36	1
cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.30	1
Styrene	ND ND		ug/kg	1.2	0.24	1
Dichlorodifluoromethane	ND		ug/kg	1.2	1.1	1
Acetone	ND		ug/kg	12	5.9	1
Carbon disulfide	ND		ug/kg	12	5.6	1
2-Butanone	ND ND		ug/kg	12	2.7	1
4-Methyl-2-pentanone	ND		ug/kg	12	1.6	1
2-Hexanone	ND		ug/kg	12	1.4	<u>'</u> 1
Bromochloromethane	ND ND		ug/kg	2.4	0.25	1
1,2-Dibromoethane	ND ND		ug/kg	1.2	0.23	1
	ND ND		ug/kg	1.2	0.34	1
n-Butylbenzene sec-Butylbenzene	ND ND		ug/kg	1.2	0.20	1
tert-Butylbenzene	ND ND		ug/kg	2.4	0.18	1
1,2-Dibromo-3-chloropropane	ND ND		ug/kg	3.7	1.2	1
Isopropylbenzene	ND ND		ug/kg ug/kg	1.2	0.13	1
p-Isopropyltoluene	ND ND		ug/kg	1.2	0.13	1
n-Propylbenzene	ND ND		ug/kg	1.2	0.13	1
	ND ND			2.4	0.40	1
1,2,3-Trichlorobenzene	ND ND		ug/kg			
1,2,4-Trichlorobenzene			ug/kg	2.4	0.33	1
1,3,5-Trimethylbenzene	ND		ug/kg	2.4	0.24	1
1,2,4-Trimethylbenzene	ND		ug/kg	2.4	0.41	1
Methyl Acetate	ND		ug/kg	4.9	1.2	1
Cyclohexane	ND		ug/kg	12	0.67	1
Freon-113	ND		ug/kg	4.9	0.85	1
Methyl cyclohexane	ND		ug/kg	4.9	0.74	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-01 Date Collected: 12/30/24 10:20

Client ID: EB-02 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by EPA 5035 Low - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	114	70-130	

L2476426

12/30/24 11:11

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

SAMPLE RESULTS

Report Date: 01/27/25

Lab Number:

Date Collected:

Lab ID: L2476426-02

Client ID: FD-01

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Date Received: 12/30/24 Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260D Analytical Date: 01/05/25 21:06

Analyst: JIC 96% Percent Solids:

1,1-Dichloroethane ND ug/kg 1.1 0.16 1 Chloroform ND ug/kg 1.7 0.16 1 Carbon tetrachloride ND ug/kg 1.1 0.26 1 1,2-Dichloropropane ND ug/kg 1.1 0.14 1 Dibromochloromethane ND ug/kg 1.1 0.16 1 Tetrachloroethane ND ug/kg 1.1 0.30 1 Tetrachloroethane ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.14 1 Trichlorofluoromethane ND ug/kg 0.56 0.14 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromoethane ND ug/kg 0.56 0.12	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/kg 1.1 0.16 1 Chloroform ND ug/kg 1.7 0.16 1 Carbon tetrachloride ND ug/kg 1.1 0.26 1 1,2-Dichloropropane ND ug/kg 1.1 0.14 1 Dibromochloromethane ND ug/kg 1.1 0.30 1 1,1,2-Trichloroethane ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.22 1 Trichlorofuloromethane ND ug/kg 0.56 0.14 1 1,2-Dichloroethane ND ug/kg 4.5 0.78 1 1,2-Dichloroethane ND ug/kg 0.56 0.12 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 Bromodichloromethane ND ug/kg 0.56 <t< td=""><td>Volatile Organics by EPA 5035 Low -</td><td>Westborough Lab</td><td></td><td></td><td></td><td></td><td></td></t<>	Volatile Organics by EPA 5035 Low -	Westborough Lab					
Chloroform ND ug/kg 1.7 0.16 1 Carbon tetrachloride ND ug/kg 1.1 0.26 1 1,2-Dichloropropane ND ug/kg 1.1 0.14 1 Dibromochloromethane ND ug/kg 1.1 0.16 1 1,1,2-Trichloroethane ND ug/kg 1.1 0.30 1 Tetrachloroethane ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.14 1 Trichloroethane ND ug/kg 4.5 0.78 1 1,2-Dichloroethane ND ug/kg 0.56 0.14 1 1,1-Trichloroethane ND ug/kg 0.56 0.12 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 trans-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 0.56 0.18	Methylene chloride	ND		ug/kg	5.6	2.6	1
Carbon tetrachloride ND ug/kg 1.1 0.26 1 1,2-Dichloropropane ND ug/kg 1.1 0.14 1 Dibromochloromethane ND ug/kg 1.1 0.16 1 1,1,2-Trichloroethane ND ug/kg 1.1 0.30 1 Tetrachloroethane ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.22 1 Trichloroethane ND ug/kg 0.56 0.14 1 1,2-Dichloroethane ND ug/kg 1.1 0.29 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 trans-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 trans-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 psomoform ND ug/kg 0.56 <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.1</td> <td>0.16</td> <td>1</td>	1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
1,2-Dichloropropane ND	Chloroform	ND		ug/kg	1.7	0.16	1
Dibromochloromethane ND ug/kg 1.1 0.16 1 1,1,2-Trichloroethane ND ug/kg 1.1 0.30 1 Tetrachloroethene ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.14 1 Trichlorofluoromethane ND ug/kg 4.5 0.78 1 1,2-Dichloroethane ND ug/kg 1.1 0.29 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 trans-1,3-Dichloropropene ND ug/kg 0.56 0.12 1 trans-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 0.56 0.18 1 Ethylbenzene ND ug/kg 1.1 <td< td=""><td>Carbon tetrachloride</td><td>ND</td><td></td><td>ug/kg</td><td>1.1</td><td>0.26</td><td>1</td></td<>	Carbon tetrachloride	ND		ug/kg	1.1	0.26	1
1,1,2-Trichloroethane ND ug/kg 1.1 0.30 1 Tetrachloroethene ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.14 1 Trichlorofluoromethane ND ug/kg 4.5 0.78 1 1,2-Dichloroethane ND ug/kg 1.1 0.29 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 Bromofichloropropene ND ug/kg 1.1 0.30 1 cis-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 1.1 0.61 1 Toluene ND ug/kg 1.1 0.61 <td>1,2-Dichloropropane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.1</td> <td>0.14</td> <td>1</td>	1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1
Tetrachloroethene ND ug/kg 0.56 0.22 1 Chlorobenzene ND ug/kg 0.56 0.14 1 Trichlorofluoromethane ND ug/kg 4.5 0.78 1 1,2-Dichloroethane ND ug/kg 1.1 0.29 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 Bromodichloropropene ND ug/kg 0.56 0.12 1 Bromoform ND ug/kg 0.56 0.12 1 Bromoform ND ug/kg 0.56 0.18 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 4.5 1.0 1	Dibromochloromethane	ND		ug/kg	1.1	0.16	1
Chlorobenzene ND ug/kg 0.56 0.14 1 Trichlorofluoromethane ND ug/kg 4.5 0.78 1 1,2-Dichloroethane ND ug/kg 1.1 0.29 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 Bromodichloropropene ND ug/kg 0.56 0.12 1 trans-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 4.5 1.0	1,1,2-Trichloroethane	ND		ug/kg	1.1	0.30	1
Trichloroffluoromethane ND ug/kg 4.5 0.78 1 1,2-Dichloroethane ND ug/kg 1.1 0.29 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 Bromodichloropropene ND ug/kg 1.1 0.30 1 cis-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 0.56 0.18 1 Ethylbenzene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 4.5 1.0 1 Chloromethane ND ug/kg 2.2 0.65	Tetrachloroethene	ND		ug/kg	0.56	0.22	1
1,2-Dichloroethane ND ug/kg 1.1 0.29 1 1,1,1-Trichloroethane ND ug/kg 0.56 0.19 1 Bromodichloromethane ND ug/kg 0.56 0.12 1 Bromodichloropropene ND ug/kg 1.1 0.30 1 cis-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.1 0.61 1 1,1,2,2-Tetrachloroethane ND ug/kg 1.1 0.16 1 1,1,1,2,2-Tetrachloroethane ND <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.56</td> <td>0.14</td> <td>1</td>	Chlorobenzene	ND		ug/kg	0.56	0.14	1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/kg	4.5	0.78	1
Bromodichloromethane ND ug/kg 0.56 0.12 1 trans-1,3-Dichloropropene ND ug/kg 1.1 0.30 1 cis-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 1.1 0.16 1 Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 2.2 0.65 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 <td>1,2-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.1</td> <td>0.29</td> <td>1</td>	1,2-Dichloroethane	ND		ug/kg	1.1	0.29	1
trans-1,3-Dichloropropene ND ug/kg 1.1 0.30 1 cis-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 1.1 0.16 1 Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 1,1-Dichloroethene ND ug/kg 1.7 0.15 1	1,1,1-Trichloroethane	ND		ug/kg	0.56	0.19	1
cis-1,3-Dichloropropene ND ug/kg 0.56 0.18 1 Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 0.56 0.18 1 Ethylbenzene ND ug/kg 1.1 0.61 1 Chloromethane ND ug/kg 1.1 0.16 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1 </td <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.56</td> <td>0.12</td> <td>1</td>	Bromodichloromethane	ND		ug/kg	0.56	0.12	1
Bromoform ND ug/kg 4.5 0.28 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 1.1 0.16 1 Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.30	1
1,1,2,2-Tetrachloroethane ND ug/kg 0.56 0.18 1 Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 1.1 0.16 1 Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	cis-1,3-Dichloropropene	ND		ug/kg	0.56	0.18	1
Benzene ND ug/kg 0.56 0.18 1 Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 1.1 0.16 1 Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Bromoform	ND		ug/kg	4.5	0.28	1
Toluene ND ug/kg 1.1 0.61 1 Ethylbenzene ND ug/kg 1.1 0.16 1 Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	0.56	0.18	1
Ethylbenzene ND ug/kg 1.1 0.16 1 Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Benzene	ND		ug/kg	0.56	0.18	1
Chloromethane ND ug/kg 4.5 1.0 1 Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Toluene	ND		ug/kg	1.1	0.61	1
Bromomethane ND ug/kg 2.2 0.65 1 Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Ethylbenzene	ND		ug/kg	1.1	0.16	1
Vinyl chloride ND ug/kg 1.1 0.38 1 Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Chloromethane	ND		ug/kg	4.5	1.0	1
Chloroethane ND ug/kg 2.2 0.51 1 1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Bromomethane	ND		ug/kg	2.2	0.65	1
1,1-Dichloroethene ND ug/kg 1.1 0.27 1 trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Vinyl chloride	ND		ug/kg	1.1	0.38	1
trans-1,2-Dichloroethene ND ug/kg 1.7 0.15 1 Trichloroethene ND ug/kg 0.56 0.15 1	Chloroethane	ND		ug/kg	2.2	0.51	1
Trichloroethene ND ug/kg 0.56 0.15 1	1,1-Dichloroethene	ND		ug/kg	1.1	0.27	1
• • • • • • • • • • • • • • • • • • • •	trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.15	1
1,2-Dichlorobenzene ND ug/kg 2.2 0.16 1	Trichloroethene	ND		ug/kg	0.56	0.15	1
	1,2-Dichlorobenzene	ND		ug/kg	2.2	0.16	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-02 Date Collected: 12/30/24 11:11

Client ID: Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	2.2	0.16	1	
1,4-Dichlorobenzene	ND		ug/kg	2.2	0.19	1	
Methyl tert butyl ether	ND		ug/kg	2.2	0.22	1	
p/m-Xylene	ND		ug/kg	2.2	0.63	1	
o-Xylene	ND		ug/kg	1.1	0.32	1	
Xylenes, Total	ND		ug/kg	1.1	0.32	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.20	1	
Styrene	ND		ug/kg	1.1	0.22	1	
Dichlorodifluoromethane	ND		ug/kg	11	1.0	1	
Acetone	ND		ug/kg	11	5.4	1	
Carbon disulfide	ND		ug/kg	11	5.1	1	
2-Butanone	ND		ug/kg	11	2.5	1	
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1	
2-Hexanone	ND		ug/kg	11	1.3	1	
Bromochloromethane	ND		ug/kg	2.2	0.23	1	
1,2-Dibromoethane	ND		ug/kg	1.1	0.31	1	
n-Butylbenzene	ND		ug/kg	1.1	0.19	1	
sec-Butylbenzene	ND		ug/kg	1.1	0.16	1	
tert-Butylbenzene	ND		ug/kg	2.2	0.13	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.4	1.1	1	
Isopropylbenzene	ND		ug/kg	1.1	0.12	1	
p-Isopropyltoluene	ND		ug/kg	1.1	0.12	1	
n-Propylbenzene	ND		ug/kg	1.1	0.19	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.2	0.36	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.2	0.30	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.2	0.22	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.2	0.37	1	
Methyl Acetate	ND		ug/kg	4.5	1.1	1	
Cyclohexane	ND		ug/kg	11	0.61	1	
Freon-113	ND		ug/kg	4.5	0.78	1	
Methyl cyclohexane	ND		ug/kg	4.5	0.68	1	

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-02 Date Collected: 12/30/24 11:11

Client ID: FD-01 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by EPA 5035 Low - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	112	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	93	70-130
Dibromofluoromethane	114	70-130

L2476426

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Report Date: 01/27/25

Lab Number:

SAMPLE RESULTS

Lab ID: L2476426-03 Date Collected: 12/30/24 10:30

Client ID: ESW-03 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260D
Analytical Date: 01/05/25 20:40

Analyst: JIC Percent Solids: 98%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low -	Westborough Lab					
Methylene chloride	ND		ug/kg	6.2	2.8	1
1,1-Dichloroethane	ND		ug/kg	1.2	0.18	1
Chloroform	ND		ug/kg	1.8	0.17	1
Carbon tetrachloride	ND		ug/kg	1.2	0.28	1
1,2-Dichloropropane	ND		ug/kg	1.2	0.15	1
Dibromochloromethane	ND		ug/kg	1.2	0.17	1
1,1,2-Trichloroethane	ND		ug/kg	1.2	0.33	1
Tetrachloroethene	ND		ug/kg	0.62	0.24	1
Chlorobenzene	ND		ug/kg	0.62	0.16	1
Trichlorofluoromethane	ND		ug/kg	4.9	0.86	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.32	1
1,1,1-Trichloroethane	ND		ug/kg	0.62	0.20	1
Bromodichloromethane	ND		ug/kg	0.62	0.13	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.34	1
cis-1,3-Dichloropropene	ND		ug/kg	0.62	0.19	1
Bromoform	ND		ug/kg	4.9	0.30	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.62	0.20	1
Benzene	ND		ug/kg	0.62	0.20	1
Toluene	ND		ug/kg	1.2	0.67	1
Ethylbenzene	ND		ug/kg	1.2	0.17	1
Chloromethane	ND		ug/kg	4.9	1.1	1
Bromomethane	ND		ug/kg	2.5	0.71	1
Vinyl chloride	ND		ug/kg	1.2	0.41	1
Chloroethane	ND		ug/kg	2.5	0.56	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.29	1
trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.17	1
Trichloroethene	ND		ug/kg	0.62	0.17	1
1,2-Dichlorobenzene	ND		ug/kg	2.5	0.18	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-03 Date Collected: 12/30/24 10:30

Client ID: ESW-03 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	2.5	0.18	1	
1,4-Dichlorobenzene	ND		ug/kg	2.5	0.21	1	
Methyl tert butyl ether	ND		ug/kg	2.5	0.25	1	
p/m-Xylene	ND		ug/kg	2.5	0.69	1	
o-Xylene	ND		ug/kg	1.2	0.36	1	
Xylenes, Total	ND		ug/kg	1.2	0.36	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.22	1	
Styrene	ND		ug/kg	1.2	0.24	1	
Dichlorodifluoromethane	ND		ug/kg	12	1.1	1	
Acetone	ND		ug/kg	12	5.9	1	
Carbon disulfide	ND		ug/kg	12	5.6	1	
2-Butanone	ND		ug/kg	12	2.7	1	
4-Methyl-2-pentanone	ND		ug/kg	12	1.6	1	
2-Hexanone	ND		ug/kg	12	1.4	1	
Bromochloromethane	ND		ug/kg	2.5	0.25	1	
1,2-Dibromoethane	ND		ug/kg	1.2	0.34	1	
n-Butylbenzene	ND		ug/kg	1.2	0.20	1	
sec-Butylbenzene	ND		ug/kg	1.2	0.18	1	
tert-Butylbenzene	ND		ug/kg	2.5	0.14	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.7	1.2	1	
Isopropylbenzene	ND		ug/kg	1.2	0.13	1	
p-Isopropyltoluene	ND		ug/kg	1.2	0.13	1	
n-Propylbenzene	ND		ug/kg	1.2	0.21	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.5	0.40	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.5	0.33	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.5	0.24	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.5	0.41	1	
Methyl Acetate	ND		ug/kg	4.9	1.2	1	
Cyclohexane	ND		ug/kg	12	0.67	1	
Freon-113	ND		ug/kg	4.9	0.85	1	
Methyl cyclohexane	ND		ug/kg	4.9	0.74	1	

Project Name: 52-54 CANAL ST LYONS **Lab Number:** L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-03 Date Collected: 12/30/24 10:30

Client ID: ESW-03 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by EPA 5035 Low - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	113	70-130	

L2476426

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

SAMPLE RESULTS

Report Date: 01/27/25

Lab Number:

Lab ID: L2476426-04 Date Collected: 12/30/24 10:35

Date Received: Client ID: **ESW-04** 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260D Analytical Date: 01/05/25 20:14

Analyst: JIC 91% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Wes	stborough Lab					
Methylene chloride	ND		ug/kg	5.4	2.5	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
Chloroform	ND		ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.1	0.25	1
1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1
Dibromochloromethane	ND		ug/kg	1.1	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.29	1
Tetrachloroethene	ND		ug/kg	0.54	0.21	1
Chlorobenzene	ND		ug/kg	0.54	0.14	1
Trichlorofluoromethane	ND		ug/kg	4.4	0.76	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.28	1
1,1,1-Trichloroethane	ND		ug/kg	0.54	0.18	1
Bromodichloromethane	ND		ug/kg	0.54	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.30	1
cis-1,3-Dichloropropene	ND		ug/kg	0.54	0.17	1
Bromoform	ND		ug/kg	4.4	0.27	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.54	0.18	1
Benzene	ND		ug/kg	0.54	0.18	1
Toluene	ND		ug/kg	1.1	0.59	1
Ethylbenzene	ND		ug/kg	1.1	0.15	1
Chloromethane	ND		ug/kg	4.4	1.0	1
Bromomethane	ND		ug/kg	2.2	0.63	1
Vinyl chloride	ND		ug/kg	1.1	0.36	1
Chloroethane	ND		ug/kg	2.2	0.49	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.26	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.15	1
Trichloroethene	ND		ug/kg	0.54	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	2.2	0.16	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-04 Date Collected: 12/30/24 10:35

Client ID: ESW-04 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - We	stborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	2.2	0.16	1	
1,4-Dichlorobenzene	ND		ug/kg	2.2	0.19	1	
Methyl tert butyl ether	ND		ug/kg	2.2	0.22	1	
p/m-Xylene	ND		ug/kg	2.2	0.61	1	
o-Xylene	ND		ug/kg	1.1	0.32	1	
Xylenes, Total	ND		ug/kg	1.1	0.32	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.19	1	
Styrene	ND		ug/kg	1.1	0.21	1	
Dichlorodifluoromethane	ND		ug/kg	11	1.0	1	
Acetone	ND		ug/kg	11	5.2	1	
Carbon disulfide	ND		ug/kg	11	5.0	1	
2-Butanone	ND		ug/kg	11	2.4	1	
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1	
2-Hexanone	ND		ug/kg	11	1.3	1	
Bromochloromethane	ND		ug/kg	2.2	0.22	1	
1,2-Dibromoethane	ND		ug/kg	1.1	0.30	1	
n-Butylbenzene	ND		ug/kg	1.1	0.18	1	
sec-Butylbenzene	ND		ug/kg	1.1	0.16	1	
tert-Butylbenzene	ND		ug/kg	2.2	0.13	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.3	1.1	1	
Isopropylbenzene	ND		ug/kg	1.1	0.12	1	
p-Isopropyltoluene	0.77	J	ug/kg	1.1	0.12	1	
n-Propylbenzene	ND		ug/kg	1.1	0.19	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.2	0.35	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.2	0.30	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.2	0.21	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.2	0.36	1	
Methyl Acetate	ND		ug/kg	4.4	1.0	1	
Cyclohexane	ND		ug/kg	11	0.59	1	
Freon-113	ND		ug/kg	4.4	0.76	1	
Methyl cyclohexane	ND		ug/kg	4.4	0.66	1	

Project Name: 52-54 CANAL ST LYONS **Lab Number:** L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-04 Date Collected: 12/30/24 10:35

Client ID: ESW-04 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by EPA 5035 Low - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	107	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	93	70-130
Dibromofluoromethane	112	70-130

L2476426

Project Name: 52-54 CANAL ST LYONS

L2476426-05

EQUIPMENT BLANK

52-54 CANAL ST, LYONS, NEW YORK

Project Number: 037112

SAMPLE RESULTS

Report Date: 01/27/25

Lab Number:

Date Collected: 12/30/24 08:30

Date Received: 12/30/24 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 12/31/24 13:35

Analyst: RAW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-05 Date Collected: 12/30/24 08:30

Client ID: EQUIPMENT BLANK Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbor	ough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Project Name: Lab Number: 52-54 CANAL ST LYONS L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: Date Collected: 12/30/24 08:30 L2476426-05

Date Received: Client ID: 12/30/24 **EQUIPMENT BLANK** Sample Location: Field Prep: 52-54 CANAL ST, LYONS, NEW YORK Not Specified

Sample Depth:

Parameter Qualifier MDL Result Units RL**Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	86	70-130	
Dibromofluoromethane	112	70-130	

L2476426

01/27/25

Project Name: 52-54 CANAL ST LYONS

> ΕK 97%

Project Number: 037112

SAMPLE RESULTS

Date Collected: 12/30/24 10:20

Lab Number:

Report Date:

L2476426-01

Client ID: EB-02 Date Received: 12/30/24

Sample Location: Field Prep: 52-54 CANAL ST, LYONS, NEW YORK Not Specified

Sample Depth:

Percent Solids:

Lab ID:

Analyst:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 01/02/25 16:45 Analytical Method: 1.8270E

Analytical Date: 01/03/25 12:10

Qualifier RL **Parameter** Result **Units** MDL **Dilution Factor** Semivolatile Organics by GC/MS - Westborough Lab Acenaphthene ND 130 ug/kg 17. 1 Hexachlorobenzene ND 100 19. 1 ug/kg Bis(2-chloroethyl)ether ND ug/kg 150 23. 1 2-Chloronaphthalene ND ug/kg 170 17. 1 3.3'-Dichlorobenzidine ND UJug/kg 170 45. 1 2.4-Dinitrotoluene ND ug/kg 170 34. 1 2,6-Dinitrotoluene ND ug/kg 170 29. 1 ND 19. 1 Fluoranthene ug/kg 100 4-Chlorophenyl phenyl ether ND ug/kg 170 18. 1 ND 4-Bromophenyl phenyl ether ug/kg 170 26. 1 ND 29. Bis(2-chloroisopropyl)ether ug/kg 200 1 Bis(2-chloroethoxy)methane ND ug/kg 180 17. 1 ND 170 24. 1 Hexachlorobutadiene ug/kg Hexachlorocyclopentadiene ND 480 150 ug/kg ND 27. Hexachloroethane 130 1 ug/kg ND 150 22. 1 Isophorone ug/kg Naphthalene ND ug/kg 170 20. 1 Nitrobenzene ND 150 25. 1 ug/kg NDPA/DPA ND ug/kg 130 19. 1 ND 1 n-Nitrosodi-n-propylamine ug/kg 170 26. ND 170 58. 1 Bis(2-ethylhexyl)phthalate ug/kg Butyl benzyl phthalate ND ug/kg 170 42. 1 ND Di-n-butylphthalate ug/kg 170 32. 1 ND Di-n-octylphthalate 170 57. 1 ug/kg Diethyl phthalate ND 170 16. 1 ug/kg ND Dimethyl phthalate ug/kg 170 35. 1 ND 100 19. 1 Benzo(a)anthracene ug/kg Benzo(a)pyrene ND ug/kg 130 41.

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-01 Date Collected: 12/30/24 10:20

Client ID: EB-02 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
- 424						
Benzo(b)fluoranthene	ND		ug/kg	100	28.	1
Benzo(k)fluoranthene	ND		ug/kg	100	27.	1
Chrysene	ND		ug/kg	100	17.	1
Acenaphthylene	ND		ug/kg	130	26.	1
Anthracene	ND		ug/kg	100	33.	1
Benzo(ghi)perylene	ND		ug/kg	130	20.	1
Fluorene	ND		ug/kg	170	16.	1
Phenanthrene	ND		ug/kg	100	20.	1
Dibenzo(a,h)anthracene	ND		ug/kg	100	19.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130	23.	1
Pyrene	ND		ug/kg	100	17.	1
Biphenyl	ND		ug/kg	380	22.	1
Aniline	ND UJ-		ug/kg	200	79.	1
4-Chloroaniline	ND UJ	_	ug/kg	170	30.	1
2-Nitroaniline	ND		ug/kg	170	32.	1
3-Nitroaniline	ND		ug/kg	170	32.	1
4-Nitroaniline	ND		ug/kg	170	70.	1
Dibenzofuran	ND		ug/kg	170	16.	1
2-Methylnaphthalene	ND		ug/kg	200	20.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	170	18.	1
Acetophenone	ND		ug/kg	170	21.	1
2,4,6-Trichlorophenol	ND		ug/kg	100	32.	1
p-Chloro-m-cresol	ND		ug/kg	170	25.	1
2-Chlorophenol	ND		ug/kg	170	20.	1
2,4-Dichlorophenol	ND		ug/kg	150	27.	1
2,4-Dimethylphenol	ND		ug/kg	170	55.	1
2-Nitrophenol	ND		ug/kg	360	63.	1
4-Nitrophenol	ND		ug/kg	240	68.	1
2,4-Dinitrophenol	ND		ug/kg	810	78.	1
4,6-Dinitro-o-cresol	ND		ug/kg	440	81.	1
Pentachlorophenol	ND		ug/kg	130	37.	1
Phenol	ND		ug/kg	170	25.	1
2-Methylphenol	ND		ug/kg	170	26.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	240	26.	1
2,4,5-Trichlorophenol	ND		ug/kg	170	32.	1
Carbazole	ND		ug/kg	170	16.	1
Atrazine	ND		ug/kg	130	59.	1
	.,_		-9-18			·

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-01 Date Collected: 12/30/24 10:20

Client ID: EB-02 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Westborough Lab					
Benzaldehyde	ND		ug/kg	220	45.	1
Caprolactam	ND		ug/kg	170	51.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	170	34.	1
1,4-Dioxane	ND		ug/kg	25	7.7	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	68	25-120	
Phenol-d6	71	10-120	
Nitrobenzene-d5	68	23-120	
2-Fluorobiphenyl	71	30-120	
2,4,6-Tribromophenol	77	10-136	
4-Terphenyl-d14	66	18-120	

L2476426

01/27/25

01/02/25 16:45

Project Name: 52-54 CANAL ST LYONS

FD-01

L2476426-02

52-54 CANAL ST, LYONS, NEW YORK

Project Number: 037112

SAMPLE RESULTS

Date Collected: 12/30/24 11:11

Date Received: 12/30/24

Extraction Date:

Lab Number:

Report Date:

Field Prep: Not Specified

Extraction Method: EPA 3546

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil Analytical Method: 1,8270E

Analytical Date: 01/03/25 12:28

Analyst: ΕK 96% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/kg	140	18.	1	
Hexachlorobenzene	ND		ug/kg	100	19.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	150	23.	1	
2-Chloronaphthalene	ND		ug/kg	170	17.	1	
3,3'-Dichlorobenzidine	ND U	J-	ug/kg	170	45.	1	
2,4-Dinitrotoluene	ND		ug/kg	170	34.	1	
2,6-Dinitrotoluene	ND		ug/kg	170	29.	1	
Fluoranthene	ND		ug/kg	100	19.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	170	18.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	170	26.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	200	29.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	180	17.	1	
Hexachlorobutadiene	ND		ug/kg	170	25.	1	
Hexachlorocyclopentadiene	ND		ug/kg	480	150	1	
Hexachloroethane	ND		ug/kg	140	27.	1	
Isophorone	ND		ug/kg	150	22.	1	
Naphthalene	ND		ug/kg	170	20.	1	
Nitrobenzene	ND		ug/kg	150	25.	1	
NDPA/DPA	ND		ug/kg	140	19.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	170	26.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	170	58.	1	
Butyl benzyl phthalate	ND		ug/kg	170	43.	1	
Di-n-butylphthalate	ND		ug/kg	170	32.	1	
Di-n-octylphthalate	ND		ug/kg	170	57.	1	
Diethyl phthalate	ND		ug/kg	170	16.	1	
Dimethyl phthalate	ND		ug/kg	170	36.	1	
Benzo(a)anthracene	ND		ug/kg	100	19.	1	
Benzo(a)pyrene	ND		ug/kg	140	41.	1	

Project Name: 52-54 CANAL ST LYONS **Lab Number:** L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-02 Date Collected: 12/30/24 11:11

Client ID: Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Benzo(b)fluoranthene	ND		ug/kg	100	28.	1
Benzo(k)fluoranthene	ND		ug/kg	100	27.	1
Chrysene	ND		ug/kg	100	18.	1
Acenaphthylene	ND		ug/kg	140	26.	1
Anthracene	ND		ug/kg	100	33.	1
Benzo(ghi)perylene	ND		ug/kg	140	20.	1
Fluorene	ND		ug/kg	170	16.	1
Phenanthrene	ND		ug/kg	100	20.	1
Dibenzo(a,h)anthracene	ND		ug/kg	100	20.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	24.	1
Pyrene	ND		ug/kg	100	17.	1
Biphenyl	ND		ug/kg	380	22.	1
Aniline	ND UJ-		ug/kg	200	80.	1
4-Chloroaniline	ND UJ-		ug/kg	170	31.	1
2-Nitroaniline	ND		ug/kg	170	32.	1
3-Nitroaniline	ND		ug/kg	170	32.	1
4-Nitroaniline	ND		ug/kg	170	70.	1
Dibenzofuran	ND		ug/kg	170	16.	1
2-Methylnaphthalene	ND		ug/kg	200	20.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	170	18.	1
Acetophenone	ND		ug/kg	170	21.	1
2,4,6-Trichlorophenol	ND		ug/kg	100	32.	1
p-Chloro-m-cresol	ND		ug/kg	170	25.	1
2-Chlorophenol	ND		ug/kg	170	20.	1
2,4-Dichlorophenol	ND		ug/kg	150	27.	1
2,4-Dimethylphenol	ND		ug/kg	170	56.	1
2-Nitrophenol	ND		ug/kg	360	64.	1
4-Nitrophenol	ND		ug/kg	240	69.	1
2,4-Dinitrophenol	ND		ug/kg	810	79.	1
4,6-Dinitro-o-cresol	ND		ug/kg	440	81.	1
Pentachlorophenol	ND		ug/kg	140	37.	1
Phenol	ND		ug/kg	170	26.	1
2-Methylphenol	ND		ug/kg	170	26.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	240	26.	1
2,4,5-Trichlorophenol	ND		ug/kg	170	32.	1
Carbazole	ND		ug/kg	170	16.	1
Atrazine	ND		ug/kg	140	59.	1

Project Name: Lab Number: 52-54 CANAL ST LYONS L2476426

Project Number: Report Date: 037112 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-02 Date Collected: 12/30/24 11:11

Client ID: Date Received: 12/30/24 FD-01 Sample Location: Field Prep: Not Specified 52-54 CANAL ST, LYONS, NEW YORK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Westborough Lab					
Benzaldehyde	ND		ug/kg	220	46.	1
Caprolactam	ND		ug/kg	170	51.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	170	34.	1
1,4-Dioxane	ND		ug/kg	25	7.8	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	74	25-120	
Phenol-d6	78	10-120	
Nitrobenzene-d5	74	23-120	
2-Fluorobiphenyl	80	30-120	
2,4,6-Tribromophenol	86	10-136	
4-Terphenyl-d14	74	18-120	

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

SAMPLE RESULTS

Report Date: 01/27/25

Extraction Method: EPA 3546

Lab ID: L2476426-03 Client ID: ESW-03

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Date Received:

Lab Number:

12/30/24 10:30 12/30/24

L2476426

Field Prep:

Extraction Date:

Date Collected:

Not Specified

01/02/25 16:45

Sample Depth:

Matrix: Soil 1,8270E Analytical Method:

Analytical Date: 01/03/25 12:46

Analyst: ΕK 98% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	ND		ug/kg	140	18.	1
Hexachlorobenzene	ND		ug/kg	100	19.	1
Bis(2-chloroethyl)ether	ND		ug/kg	150	23.	1
2-Chloronaphthalene	ND		ug/kg	170	17.	1
3,3'-Dichlorobenzidine	ND UJ	_	ug/kg	170	45.	1
2,4-Dinitrotoluene	ND		ug/kg	170	34.	1
2,6-Dinitrotoluene	ND		ug/kg	170	29.	1
Fluoranthene	ND		ug/kg	100	20.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	170	18.	1
4-Bromophenyl phenyl ether	ND		ug/kg	170	26.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	200	29.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	180	17.	1
Hexachlorobutadiene	ND		ug/kg	170	25.	1
Hexachlorocyclopentadiene	ND		ug/kg	490	150	1
Hexachloroethane	ND		ug/kg	140	28.	1
Isophorone	ND		ug/kg	150	22.	1
Naphthalene	ND		ug/kg	170	21.	1
Nitrobenzene	ND		ug/kg	150	25.	1
NDPA/DPA	ND		ug/kg	140	19.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	170	26.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	170	59.	1
Butyl benzyl phthalate	ND		ug/kg	170	43.	1
Di-n-butylphthalate	ND		ug/kg	170	32.	1
Di-n-octylphthalate	ND		ug/kg	170	58.	1
Diethyl phthalate	ND		ug/kg	170	16.	1
Dimethyl phthalate	ND		ug/kg	170	36.	1

ND

ND

1

100

140

19.

42.

ug/kg

ug/kg

Benzo(a)anthracene

Benzo(a)pyrene

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-03 Date Collected: 12/30/24 10:30

Client ID: ESW-03 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Benzo(b)fluoranthene	ND		ug/kg	100	29.	1
Benzo(k)fluoranthene	ND		ug/kg	100	27.	1
Chrysene	ND		ug/kg	100	18.	1
Acenaphthylene	ND		ug/kg	140	26.	1
Anthracene	ND		ug/kg	100	33.	1
Benzo(ghi)perylene	ND		ug/kg	140	20.	1
Fluorene	ND		ug/kg	170	16.	1
Phenanthrene	ND		ug/kg	100	21.	1
Dibenzo(a,h)anthracene	ND		ug/kg	100	20.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	24.	1
Pyrene	ND		ug/kg	100	17.	1
Biphenyl	ND		ug/kg	390	22.	1
Aniline	ND UJ-		ug/kg	200	80.	1
4-Chloroaniline	ND UJ-		ug/kg	170	31.	1
2-Nitroaniline	ND		ug/kg	170	33.	1
3-Nitroaniline	ND		ug/kg	170	32.	1
4-Nitroaniline	ND		ug/kg	170	70.	1
Dibenzofuran	ND		ug/kg	170	16.	1
2-Methylnaphthalene	ND		ug/kg	200	20.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	170	18.	1
Acetophenone	ND		ug/kg	170	21.	1
2,4,6-Trichlorophenol	ND		ug/kg	100	32.	1
p-Chloro-m-cresol	ND		ug/kg	170	25.	1
2-Chlorophenol	ND		ug/kg	170	20.	1
2,4-Dichlorophenol	ND		ug/kg	150	27.	1
2,4-Dimethylphenol	ND		ug/kg	170	56.	1
2-Nitrophenol	ND		ug/kg	370	64.	1
4-Nitrophenol	ND		ug/kg	240	70.	1
2,4-Dinitrophenol	ND		ug/kg	820	79.	1
4,6-Dinitro-o-cresol	ND		ug/kg	440	82.	1
Pentachlorophenol	ND		ug/kg	140	38.	1
Phenol	ND		ug/kg	170	26.	1
2-Methylphenol	ND		ug/kg	170	26.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	240	27.	1
2,4,5-Trichlorophenol	ND		ug/kg	170	33.	1
Carbazole	ND		ug/kg	170	16.	1
Atrazine	ND		ug/kg	140	60.	1

Project Name: Lab Number: 52-54 CANAL ST LYONS L2476426

Project Number: Report Date: 037112 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-03 Date Collected: 12/30/24 10:30

Client ID: Date Received: 12/30/24 ESW-03

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Westborough Lab					
Benzaldehyde	ND		ug/kg	220	46.	1
Caprolactam	ND		ug/kg	170	52.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	170	34.	1
1,4-Dioxane	ND		ug/kg	26	7.8	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	83	25-120	
Phenol-d6	86	10-120	
Nitrobenzene-d5	78	23-120	
2-Fluorobiphenyl	84	30-120	
2,4,6-Tribromophenol	96	10-136	
4-Terphenyl-d14	85	18-120	

Project Name: 52-54 CANAL ST LYONS

Project Number: 037112

Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-04

Client ID: **ESW-04**

52-54 CANAL ST, LYONS, NEW YORK Sample Location:

Date Received: Field Prep:

Lab Number:

Date Collected:

12/30/24 10:35 12/30/24 Not Specified

L2476426

Sample Depth:

Matrix: Soil Analytical Method: 1,8270E

Analytical Date: 01/03/25 13:04

Analyst: ΕK 91% Percent Solids:

Extraction Method: EPA 3546 **Extraction Date:** 01/02/25 16:45

Acenaphthene ND ug/kg 140 19. 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Hexachlorobenzene ND	Semivolatile Organics by GC/MS - W	estborough Lab						
Bis(2-chloroethyl)ether ND ug/kg 160 24. 1 2-Chloronaphthalene ND ug/kg 180 18. 1 3,3'-Dichlorobenzidine ND ug/kg 180 48. 1 2,4-Dinitrotoluene ND ug/kg 180 36. 1 2,6-Dinitrotoluene ND ug/kg 180 31. 1 2,6-Dinitrotoluene ND ug/kg 180 31. 1 Fluoranthene 130 ug/kg 180 31. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 19. 1 4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 4-Bromophenyl phenyl ether ND ug/kg 220 31. 1 4-Bromophenyl phenyl ether ND ug/kg 220 31. 1 4-Bromophenyl phenyl ether ND ug/kg 220 31. 1 4-Bromophenyl phenyl ether ND ug/kg	Acenaphthene	ND		ug/kg	140	19.	1	
2-Chloronaphthalene ND ug/kg 180 18. 1 3,3*-Dichlorobenzidine ND UJ- ug/kg 180 48. 1 2,4*-Dinitrotoluene ND ug/kg 180 36. 1 2,6*-Dinitrotoluene ND ug/kg 180 31. 1 Fluoranthene 130 ug/kg 110 21. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 19. 1 4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 4-Bromophenyl phenyl ether ND ug/kg 180 26. 1 Hexachlorobutadiene <t< td=""><td>Hexachlorobenzene</td><td>ND</td><td></td><td>ug/kg</td><td>110</td><td>20.</td><td>1</td><td></td></t<>	Hexachlorobenzene	ND		ug/kg	110	20.	1	
3,3'-Dichlorobenzidine ND UJ- ug/kg 180 48. 1 2,4-Dinitrotoluene ND ug/kg 180 36. 1 2,6-Dinitrotoluene ND ug/kg 180 31. 1 Fluoranthene 130 ug/kg 110 21. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 19. 1 4-Bis(2-chloroisopropyl)ether ND ug/kg 180 28. 1 Bis(2-chloroisopropyl)ether ND ug/kg 220 31. 1 Bis(2-chloroethoxy)methane ND ug/kg 200 18. 1 Hexachlorocyclopentadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 160 24. 1 Hexachlorocyclopentadiene ND ug/kg 180 22. 1 Hexachlorocyclopentadiene ND ug/kg 180 22. 1 Isophorone ND	Bis(2-chloroethyl)ether	ND		ug/kg	160	24.	1	
2,4-Dinitrotoluene ND ug/kg 180 36. 1 2,6-Dinitrotoluene ND ug/kg 180 31. 1 Fluoranthene 130 ug/kg 110 21. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 19. 1 4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chloroisopropyl)ether ND ug/kg 220 31. 1 Bis(2-chloroethoxy)methane ND ug/kg 200 18. 1 Hexachlorocyclopentadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachlorocyclopentadiene ND ug/kg 140 29. 1 Isophorone ND ug/kg 160 24. 1 Naphthalene 34 J ug/kg 180 22. 1 NItrobenzene ND ug/kg 180 27. 1 NDPA/DPA ND ug/kg	2-Chloronaphthalene	ND		ug/kg	180	18.	1	
2,6-Dinitrotoluene ND ug/kg 180 31. 1 Fluoranthene 130 ug/kg 110 21. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 19. 1 4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chloroisopropyl)ether ND ug/kg 200 31. 1 Bis(2-chloroethoxy)methane ND ug/kg 200 18. 1 Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachlorocyclopentadiene ND ug/kg 140 29. 1 Hexachlorocyclopentadiene ND ug/kg 160 24. 1 Hexachlorocyclopentadiene ND ug/kg 160 24. 1 Hexachlorocyclopentadiene ND ug/kg 160 24. 1 Isophorone ND ug/kg 160 24. 1 Naphthalene ND ug	3,3'-Dichlorobenzidine	ND UJ-		ug/kg	180	48.	1	
Fluoranthene 130 ug/kg 110 21. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 19. 1 4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chloroisopropyl)ether ND ug/kg 220 31. 1 Bis(2-chloroethoxy)methane ND ug/kg 200 18. 1 Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachlorocyclopentadiene ND ug/kg 140 29. 1 Hexachlorocyclopentadiene ND ug/kg 160 24. 1 Hexachlorocyclopentadiene ND ug/kg 160 22. 1 Hexachlorocyclopentadiene ND ug/kg 160 24. 1 Hexachlorocyclopentadiene ND ug/kg 180 22. 1 Isophoroce ND	2,4-Dinitrotoluene	ND		ug/kg	180	36.	1	
4-Chlorophenyl phenyl ether ND ug/kg 180 19. 1 4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chloroisopropyl)ether ND ug/kg 220 31. 1 Bis(2-chloroethoxy)methane ND ug/kg 200 18. 1 Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachlorocyclopentadiene ND ug/kg 140 29. 1 Hexachlorocyclopentadiene ND ug/kg 160 24. 1 Hexachlorocyclopentadiene ND ug/kg 160 29. 1 Hexachlorocyclopentadiene ND ug/kg 180 22. 1 Isophorone ND ug/kg 180 22. 1 Naphthalene 34 J ug/kg 180 22. 1 Nitrobenzene ND ug/kg 180 28. 1 ND ug/kg <td< td=""><td>2,6-Dinitrotoluene</td><td>ND</td><td></td><td>ug/kg</td><td>180</td><td>31.</td><td>1</td><td></td></td<>	2,6-Dinitrotoluene	ND		ug/kg	180	31.	1	
4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chloroisopropyl)ether ND ug/kg 220 31. 1 Bis(2-chloroethoxy)methane ND ug/kg 200 18. 1 Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachloroethane ND ug/kg 140 29. 1 Isophorone ND ug/kg 160 24. 1 Naphthalene 34 J ug/kg 180 22. 1 Nitrobenzene ND ug/kg 160 27. 1 NDPA/DPA ND ug/kg 140 21. 1 N-Nitrobenzene ND ug/kg 180 28. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 63. 1 Butyl benzyl phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 </td <td>Fluoranthene</td> <td>130</td> <td></td> <td>ug/kg</td> <td>110</td> <td>21.</td> <td>1</td> <td></td>	Fluoranthene	130		ug/kg	110	21.	1	
Bis(2-chloroisopropyl)ether ND ug/kg 220 31. 1 Bis(2-chloroethoxy)methane ND ug/kg 200 18. 1 Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachlorocyclopentadiene ND ug/kg 140 29. 1 Hexachlorocyclopentadiene ND ug/kg 160 24. 1 Hexachlorocyclopentadiene ND ug/kg 160 29. 1 Isophorone ND ug/kg 160 24. 1 Isophorone ND ug/kg 180 22. 1 Naphthalene 34 J ug/kg 180 22. 1 Nitrobenzene ND ug/kg 160 27. 1 NDPA/DPA ND ug/kg 180 28. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 18	4-Chlorophenyl phenyl ether	ND		ug/kg	180	19.	1	
Bis(2-chloroethoxy)methane ND ug/kg 200 18. 1 Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachlorocyclopentadiene ND ug/kg 140 29. 1 Hexachlorocyclopentadiene ND ug/kg 140 29. 1 Hexachlorocyclopentadiene ND ug/kg 140 29. 1 Hexachlorocyclopentadiene ND ug/kg 160 24. 1 Hexachlorocyclopentadiene ND ug/kg 160 29. 1 Isophorone ND ug/kg 160 24. 1 Naphthalene 34 J ug/kg 180 22. 1 NDPA/DPA ND ug/kg 140 21. 1 1 n-Nitrosodi-n-propylamine ND ug/kg 180 63. 1 Bis(2-ethylhexyl)phthalate	4-Bromophenyl phenyl ether	ND		ug/kg	180	28.	1	
Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachlorocthane ND ug/kg 140 29. 1 Isophorone ND ug/kg 160 24. 1 Naphthalene 34 J ug/kg 180 22. 1 Nitrobenzene ND ug/kg 160 27. 1 NDPA/DPA ND ug/kg 140 21. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 28. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 63. 1 Butyl benzyl phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 62. 1 Di-n-butylphthalate ND ug/kg 180 <td< td=""><td>Bis(2-chloroisopropyl)ether</td><td>ND</td><td></td><td>ug/kg</td><td>220</td><td>31.</td><td>1</td><td></td></td<>	Bis(2-chloroisopropyl)ether	ND		ug/kg	220	31.	1	
Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachloroethane ND ug/kg 140 29. 1 Isophorone ND ug/kg 160 24. 1 Naphthalene 34 J ug/kg 180 22. 1 Nitrobenzene ND ug/kg 160 27. 1 NDPA/DPA ND ug/kg 140 21. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 28. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 63. 1 Butyl benzyl phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 62. 1 Diethyl phthalate ND ug/kg 180 17. 1 Diethyl phthalate ND ug/kg 180 38.	Bis(2-chloroethoxy)methane	ND		ug/kg	200	18.	1	
Hexachloroethane	Hexachlorobutadiene	ND		ug/kg	180	26.	1	
Sophorone ND ug/kg 160 24. 1	Hexachlorocyclopentadiene	ND		ug/kg	520	160	1	
Naphthalene 34 J ug/kg 180 22. 1 Nitrobenzene ND ug/kg 160 27. 1 NDPA/DPA ND ug/kg 140 21. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 28. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 63. 1 Butyl benzyl phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 62. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1	Hexachloroethane	ND		ug/kg	140	29.	1	
Nitrobenzene ND ug/kg 160 27. 1 NDPA/DPA ND ug/kg 140 21. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 28. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 63. 1 Butyl benzyl phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 62. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1	Isophorone	ND		ug/kg	160	24.	1	
NDPA/DPA ND ug/kg 140 21. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 28. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 63. 1 Butyl benzyl phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 62. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1	Naphthalene	34	J	ug/kg	180	22.	1	
n-Nitrosodi-n-propylamine ND ug/kg 180 28. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 63. 1 Butyl benzyl phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 62. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1	Nitrobenzene	ND		ug/kg	160	27.	1	
Bis(2-ethylhexyl)phthalate ND ug/kg 180 63. 1 Butyl benzyl phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 62. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1	NDPA/DPA	ND		ug/kg	140	21.	1	
Butyl benzyl phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 62. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1	n-Nitrosodi-n-propylamine	ND		ug/kg	180	28.	1	
Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 62. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1	Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	63.	1	
Di-n-octylphthalate ND ug/kg 180 62. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1	Butyl benzyl phthalate	ND		ug/kg	180	46.	1	
Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1	Di-n-butylphthalate	ND		ug/kg	180	34.	1	
Dimethyl phthalate ND ug/kg 180 38. 1	Di-n-octylphthalate	ND		ug/kg	180	62.	1	
	Diethyl phthalate	ND		ug/kg	180	17.	1	
Renzo(a)anthracene 72 J. ug/kg 110 20 1	Dimethyl phthalate	ND		ug/kg	180	38.	1	
25/125(4)4/14/14/14/25/15	Benzo(a)anthracene	72	J	ug/kg	110	20.	1	
Benzo(a)pyrene 75 J ug/kg 140 44. 1	Benzo(a)pyrene	75	J	ug/kg	140	44.	1	

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-04 Date Collected: 12/30/24 10:35

Client ID: ESW-04 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
Benzo(b)fluoranthene	95	J	ug/kg	110	30.	1
Benzo(k)fluoranthene	38	J	ug/kg	110	29.	1
Chrysene	87	J	ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	140	28.	1
Anthracene	ND		ug/kg	110	35.	1
Benzo(ghi)perylene	50	J	ug/kg	140	21.	1
Fluorene	ND		ug/kg	180	18.	1
Phenanthrene	95	J	ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	39	J	ug/kg	140	25.	1
Pyrene	110		ug/kg	110	18.	1
Biphenyl	ND		ug/kg	410	24.	1
Aniline	ND U	J-	ug/kg	220	85.	1
4-Chloroaniline	ND U.	J-	ug/kg	180	33.	1
2-Nitroaniline	ND		ug/kg	180	35.	1
3-Nitroaniline	ND		ug/kg	180	34.	1
4-Nitroaniline	ND		ug/kg	180	75.	1
Dibenzofuran	ND		ug/kg	180	17.	1
2-Methylnaphthalene	38	J	ug/kg	220	22.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	180	19.	1
Acetophenone	ND		ug/kg	180	22.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	34.	1
p-Chloro-m-cresol	ND		ug/kg	180	27.	1
2-Chlorophenol	ND		ug/kg	180	21.	1
2,4-Dichlorophenol	ND		ug/kg	160	29.	1
2,4-Dimethylphenol	ND		ug/kg	180	60.	1
2-Nitrophenol	ND		ug/kg	390	68.	1
4-Nitrophenol	ND		ug/kg	250	74.	1
2,4-Dinitrophenol	ND		ug/kg	870	84.	1
4,6-Dinitro-o-cresol	ND		ug/kg	470	87.	1
Pentachlorophenol	ND		ug/kg	140	40.	1
Phenol	ND		ug/kg	180	27.	1
2-Methylphenol	ND		ug/kg	180	28.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	260	28.	1
2,4,5-Trichlorophenol	ND		ug/kg	180	35.	1
Carbazole	ND		ug/kg	180	18.	1
Atrazine	ND		ug/kg	140	63.	1

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-04 Date Collected: 12/30/24 10:35

Client ID: ESW-04 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Benzaldehyde	ND		ug/kg	240	49.	1
Caprolactam	ND		ug/kg	180	55.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	180	36.	1
1,4-Dioxane	ND		ug/kg	27	8.3	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	70	25-120	
Phenol-d6	71	10-120	
Nitrobenzene-d5	73	23-120	
2-Fluorobiphenyl	82	30-120	
2,4,6-Tribromophenol	86	10-136	
4-Terphenyl-d14	80	18-120	

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-05 Date Collected: 12/30/24 08:30

Client ID: EQUIPMENT BLANK Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 01/03/25 07:32

Analytical Method: 1,8270E Extraction Date: 01/03/25 07:32

Analytical Date: 01/04/25 09:57

Analyst: EK

3.3-Dichlorobenzidine ND ug/l 5.0 1.8 1 2.4-Dinitrotoluene ND ug/l 5.0 0.54 1 2.6-Dinitrotoluene ND ug/l 5.0 0.84 1 4-Chilorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.40 1 Bis(2-chlorostospropyl)ether ND ug/l 2.0 0.40 1 Bis(2-chlorostospropyl)ether ND ug/l 5.0 0.84 1 Bis(2-chlorostospropyl)ether ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 2.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 2.0 0.86 1 Nitrobanzene ND ug/l 2.0 0.20 1 NItrobanzene ND ug/l 2.0 0.20 1 NDPADDA ND ug/l	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
3.3-Dichlorobenzidine ND ug/l 5.0 1.8 1 2.4-Dinitrotoluene ND ug/l 5.0 0.54 1 2.6-Dinitrotoluene ND ug/l 5.0 0.84 1 4-Chilorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.40 1 Bis(2-chlorosisporpoyl)ether ND ug/l 2.0 0.40 1 Bis(2-chlorosisporpoyl)ether ND ug/l 5.0 0.84 1 Bis(2-chlorosisporpoyl)ether ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 2.0 0.24 1 Bis(2-chlorosithoxy)methane ND ug/l 2.0 0.86 1 Nitrobenzene ND ug/l 2.0 0.20 1 NItrobenzene ND ug/l 2.0 0.92 1 ND-h-Nitrosodin-propylamine ND	Semivolatile Organics by GC/MS - W	estborough Lab					
2,4-Dinitrotoluene ND ug/l 5.0 0.54 1 2,6-Dinitrotoluene ND ug/l 5.0 0.84 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 Bis(2-chlorostopyl)ether ND ug/l 2.0 0.40 1 Bis(2-chlorostopyl)ether ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.86 1 Hexachlorocyclopentadiene ND ug/l 2.0 0.20 1 Isophorone ND ug/l 5.0 0.86 1 Nitrobenzare ND ug/l 2.0 0.20 1 NDPA/DPA ND ug/l 2.0 0.92 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1
2,4-Dinitrotoluene ND ug/l 5.0 0.54 1 2,6-Dinitrotoluene ND ug/l 5.0 0.84 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.40 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.86 1 Isophorone ND ug/l 5.0 0.86 1 Isophorone ND ug/l 5.0 0.86 1 Nitrobenzare ND ug/l 2.0 0.20 1 NDPA/DPA ND ug/l 5.0 0.92 1 n-Nitrosoiline ND ug/l 5.0 0.9	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.40 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND UJ- ug/l 20 1.2 1 Isophorone ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 2.0 0.20 1 Nitrobenzene ND ug/l 2.0 0.20 1 Nitrobenzene ND ug/l 2.0 0.92 1 Nitrobenzene ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.91 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Di-n-butylphthalate ND ug/l 5.0 0.92 1 Bis(2-ethylphthalate ND ug/l 5.0 0.92 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Di-n-butylphthalate ND ug/l 5.0 0.92 1 Di-n-butylphthalate ND ug/l 5.0 0.92 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Di-n-butylphthalate ND ug/l 5.0 0.92 1 Di-n-butylphthalate ND ug/l 5.0 0.47 1 Di-n-butylphthalate ND ug/l 5.0 0.40 1 Di-n-butylphthalate ND ug/l 5.0 0.40 1 Di-n-butylphthalate ND ug/l 5.0 0.40 1	2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1
A-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1	2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1
Bis(2-chloroisopropylether ND ug/l 2.0 0.40 1	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1
Bis(2-chloroethoxy)methane ND	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1
Hexachlorocyclopentadiene ND UJ- ug/l 20 1.2 1	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1
ND	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1
NID	Hexachlorocyclopentadiene	ND UJ-		ug/l	20	1.2	1
NDPA/DPA ND ug/l 2.0 0.92 1	Isophorone	ND		ug/l	5.0	0.86	1
ND	Nitrobenzene	ND		ug/l	2.0	0.20	1
Bis(2-ethylhexyl)phthalate	NDPA/DPA	ND		ug/l	2.0	0.92	1
Butyl benzyl phthalate	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1
Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-octylphthalate ND ug/l 5.0 2.3 1 Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 Aniline ND ug/l 2.0 0.67 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1
Di-n-octylphthalate ND ug/l 5.0 2.3 1	Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1
Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 Aniline ND ug/l 2.0 0.67 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	Di-n-butylphthalate	ND		ug/l	5.0	0.96	1
Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 Aniline ND UJ ug/l 2.0 0.67 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	Di-n-octylphthalate	ND		ug/l	5.0	2.3	1
ND	Diethyl phthalate	ND		ug/l	5.0	0.76	1
Aniline	Dimethyl phthalate	ND		ug/l	5.0	0.92	1
4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	Biphenyl	ND		ug/l	2.0	0.20	1
2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	Aniline	ND UJ-		ug/l	2.0	0.67	1
3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	4-Chloroaniline	ND		ug/l	5.0	0.47	1
4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	2-Nitroaniline	ND		ug/l	5.0	1.0	1
Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	3-Nitroaniline	ND		ug/l	5.0	1.2	1
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	4-Nitroaniline	ND		ug/l	5.0	1.4	1
	Dibenzofuran	ND		ug/l	2.0	0.40	1
Acetophenone ND ug/l 5.0 0.92 1	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1
	Acetophenone	ND		ug/l	5.0	0.92	1

Project Name: Lab Number: 52-54 CANAL ST LYONS L2476426

Project Number: Report Date: 037112 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-05 Date Collected: 12/30/24 08:30

Date Received: Client ID: **EQUIPMENT BLANK** 12/30/24 Field Prep: Not Specified

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1
2-Chlorophenol	ND		ug/l	2.0	0.65	1
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1
2-Nitrophenol	ND		ug/l	10	2.0	1
4-Nitrophenol	ND		ug/l	10	1.4	1
2,4-Dinitrophenol	ND		ug/l	20	5.4	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1
Phenol	ND		ug/l	5.0	0.35	1
2-Methylphenol	ND		ug/l	5.0	2.3	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1
Carbazole	ND		ug/l	2.0	0.31	1
Atrazine	ND		ug/l	10	1.0	1
Benzaldehyde	ND		ug/l	5.0	1.1	1
Caprolactam	ND		ug/l	10	1.2	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	44	21-120	
Phenol-d6	31	10-120	
Nitrobenzene-d5	60	23-120	
2-Fluorobiphenyl	60	15-120	
2,4,6-Tribromophenol	70	10-120	
4-Terphenyl-d14	67	41-149	

Project Name: Lab Number: 52-54 CANAL ST LYONS L2476426

Project Number: Report Date: 037112 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-05 Date Collected: 12/30/24 08:30

Date Received: Client ID: **EQUIPMENT BLANK** 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 01/03/25 07:32 Analytical Method: 1,8270E-SIM Analytical Date: 01/04/25 14:48

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	· Westborough La	b				
Acenaphthene	ND		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.03	J	ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	ND		ug/l	0.10	0.02	1
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.03	1
Benzo(a)pyrene	0.04	J	ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.08	J U*	ug/l	0.10	0.03	1
Benzo(k)fluoranthene	0.08	J U*	ug/l	0.10	0.03	1
Chrysene	0.05	J	ug/l	0.10	0.03	1
Acenaphthylene	ND		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	0.11	U*	ug/l	0.10	0.02	1
Fluorene	ND		ug/l	0.10	0.03	1
Phenanthrene	ND		ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	0.12	U*	ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	0.11	U*	ug/l	0.10	0.02	1
Pyrene	ND		ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

Project Name: Lab Number: 52-54 CANAL ST LYONS L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Date Collected:

12/30/24 08:30 Date Received: Client ID: 12/30/24 **EQUIPMENT BLANK**

Sample Location: Field Prep: 52-54 CANAL ST, LYONS, NEW YORK Not Specified

Sample Depth:

Lab ID:

Qualifier MDL Parameter Result Units RL**Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

L2476426-05

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	40	21-120
Phenol-d6	31	10-120
Nitrobenzene-d5	63	23-120
2-Fluorobiphenyl	63	15-120
2,4,6-Tribromophenol	64	10-120
4-Terphenyl-d14	71	41-149

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-01 Date Collected: 12/30/24 10:20

Client ID: EB-02 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 01/02/25 15:45
Analytical Date: 01/04/25 10:44 Cleanup Method: EPA 3665A

Analyst: MEO Cleanup Date: 01/03/25
Percent Solids: 97% Cleanup Method: EPA 3660B

ercent Solids: 9/% Cleanup Metriod. EPA 366 Cleanup Date: 01/04/25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC -	Westborough Lab						
Aroclor 1016	ND		ug/kg	50.5	4.49	1	Α
Aroclor 1221	ND		ug/kg	50.5	5.06	1	Α
Aroclor 1232	ND		ug/kg	50.5	10.7	1	Α
Aroclor 1242	ND		ug/kg	50.5	6.81	1	Α
Aroclor 1248	ND		ug/kg	50.5	7.58	1	Α
Aroclor 1254	ND		ug/kg	50.5	5.53	1	Α
Aroclor 1260	ND		ug/kg	50.5	9.34	1	Α
Aroclor 1262	ND		ug/kg	50.5	6.42	1	Α
Aroclor 1268	ND		ug/kg	50.5	5.24	1	Α
PCBs, Total	ND		ug/kg	50.5	4.49	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	58		30-150	Α
Decachlorobiphenyl	58		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	57		30-150	В
Decachlorobiphenyl	61		30-150	В

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-02 Date Collected: 12/30/24 11:11

Client ID: FD-01 Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 01/02/25 15:45
Analytical Date: 01/04/25 10:52 Cleanup Method: EPA 3665A

Analyst: MEO Cleanup Date: 01/03/25
Percent Solids: 96% Cleanup Date: 01/04/25

Cleanup Date: 01/04/25

Cleanup Date: 01/04/25

Qualifier Units RLMDL **Parameter** Result **Dilution Factor** Column Polychlorinated Biphenyls by GC - Westborough Lab Aroclor 1016 ND ug/kg 49.2 4.37 1 Α Aroclor 1221 ND ug/kg 49.2 4.93 1 Α Aroclor 1232 ND ug/kg 49.2 10.4 1 Α ND Aroclor 1242 ug/kg 49.2 6.63 1 Α Aroclor 1248 ND ug/kg 49.2 7.38 1 Α Aroclor 1254 ND ug/kg 49.2 5.38 1 Α ND Aroclor 1260 ug/kg 49.2 9.09 1 Α Aroclor 1262 ND 49.2 6.25 1 Α ug/kg Aroclor 1268 ND ug/kg 49.2 5.10 1 Α ND PCBs, Total ug/kg 49.2 4.37 1 Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	58		30-150	Α
Decachlorobiphenyl	58		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	55		30-150	В
Decachlorobiphenyl	58		30-150	В

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-03 Date Collected: 12/30/24 10:30

Client ID: ESW-03 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 01/02/25 15:45

Analytical Date: 01/04/25 11:00 Cleanup Method: EPA 3665A
Analyst: MEO Cleanup Date: 01/03/25

Percent Solids: 98% Cleanup Method: EPA 3660B Cleanup Date: 01/04/25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Polychlorinated Biphenyls by GC - Westborough Lab								
Aroclor 1016	ND		ug/kg	49.4	4.39	1	Α	
Aroclor 1221	ND		ug/kg	49.4	4.95	1	Α	
Aroclor 1232	ND		ug/kg	49.4	10.5	1	Α	
Aroclor 1242	ND		ug/kg	49.4	6.66	1	Α	
Aroclor 1248	ND		ug/kg	49.4	7.42	1	Α	
Aroclor 1254	ND		ug/kg	49.4	5.41	1	Α	
Aroclor 1260	ND		ug/kg	49.4	9.14	1	Α	
Aroclor 1262	ND		ug/kg	49.4	6.28	1	Α	
Aroclor 1268	ND		ug/kg	49.4	5.12	1	Α	
PCBs, Total	ND		ug/kg	49.4	4.39	1	Α	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	61		30-150	Α
Decachlorobiphenyl	62		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	59		30-150	В
Decachlorobiphenyl	60		30-150	В

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-04 Date Collected: 12/30/24 10:35

Client ID: ESW-04 Date Received: 12/30/24 Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 01/02/25 15:45

Analytical Date: 01/04/25 11:07 Cleanup Method: EPA 3665A Cleanup Date: 01/03/25

Percent Solids: 91% Cleanup Method: EPA 3660B Cleanup Date: 01/04/25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Polychlorinated Biphenyls by GC - Westborough Lab								
Aroclor 1016	ND		ug/kg	52.2	4.64	1	Α	
Aroclor 1221	ND		ug/kg	52.2	5.24	1	Α	
Aroclor 1232	ND		ug/kg	52.2	11.1	1	Α	
Aroclor 1242	ND		ug/kg	52.2	7.04	1	Α	
Aroclor 1248	ND		ug/kg	52.2	7.84	1	Α	
Aroclor 1254	ND		ug/kg	52.2	5.72	1	Α	
Aroclor 1260	ND		ug/kg	52.2	9.66	1	Α	
Aroclor 1262	ND		ug/kg	52.2	6.64	1	Α	
Aroclor 1268	ND		ug/kg	52.2	5.41	1	Α	
PCBs, Total	ND		ug/kg	52.2	4.64	1	Α	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	62		30-150	Α
Decachlorobiphenyl	63		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	60		30-150	В
Decachlorobiphenyl	63		30-150	В

Serial_No:01272510:52

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

SAMPLE RESULTS

Lab ID: L2476426-05 Date Collected: 12/30/24 08:30

Client ID: EQUIPMENT BLANK Date Received: 12/30/24

Sample Location: 52-54 CANAL ST, LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8082A Extraction Date: 01/02/25 23:18
Analytical Date: 01/03/25 09:22 Cleanup Method: EPA 3665A

Analyst: MHG Cleanup Date: 01/03/25

Cleanup Method: EPA 3660B Cleanup Date: 01/03/25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Wes	stborough Lab						
Aroclor 1016	ND		ug/l	0.071	0.061	1	Α
Aroclor 1221	ND		ug/l	0.071	0.061	1	Α
Aroclor 1232	ND		ug/l	0.071	0.061	1	Α
Aroclor 1242	ND		ug/l	0.071	0.061	1	Α
Aroclor 1248	ND		ug/l	0.071	0.061	1	Α
Aroclor 1254	ND		ug/l	0.071	0.061	1	Α
Aroclor 1260	ND		ug/l	0.071	0.061	1	Α
Aroclor 1262	ND		ug/l	0.071	0.061	1	Α
Aroclor 1268	ND		ug/l	0.071	0.061	1	Α
PCBs, Total	ND		ug/l	0.071	0.061	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	85		30-150	Α
Decachlorobiphenyl	64		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	92		30-150	В
Decachlorobiphenyl	80		30-150	В

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

SAMPLE RESULTS

Lab Number: L2476274

Report Date: 01/24/25

Lab ID: L2476274-01 Date Collected: 12/27/24 14:00

Client ID: Date Received: 12/27/24 EB-01 Field Prep: Not Specified

Sample Location: 52-54 CANAL ST. LYONS, NEW YORK

Sample Depth:

Matrix: Soil Analytical Method: 1,8260D Analytical Date: 01/06/25 10:57

Analyst: AJK 91% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - W	estborough Lab					
Methylene chloride	ND U	IJ-	ug/kg	5.2	2.4	1
1,1-Dichloroethane	ND		ug/kg	1.0	0.15	1
Chloroform	ND		ug/kg	1.6	0.14	1
Carbon tetrachloride	ND U	IJ-	ug/kg	1.0	0.24	1
1,2-Dichloropropane	ND U	IJ-	ug/kg	1.0	0.13	1
Dibromochloromethane	ND L	IJ-	ug/kg	1.0	0.14	1
1,1,2-Trichloroethane	ND L	JJ-	ug/kg	1.0	0.28	1
Tetrachloroethene	ND (JJ-	ug/kg	0.52	0.20	1
Chlorobenzene	ND (JJ-	ug/kg	0.52	0.13	1
Trichlorofluoromethane	ND		ug/kg	4.2	0.72	1
1,2-Dichloroethane	ND		ug/kg	1.0	0.27	1
1,1,1-Trichloroethane	ND		ug/kg	0.52	0.17	1
Bromodichloromethane	ND U	J-	ug/kg	0.52	0.11	1
trans-1,3-Dichloropropene	ND U	J-	ug/kg	1.0	0.28	1
cis-1,3-Dichloropropene	ND U.	J-	ug/kg	0.52	0.16	1
Bromoform	ND U.	J-	ug/kg	4.2	0.26	1
1,1,2,2-Tetrachloroethane	ND U	J-	ug/kg	0.52	0.17	1
Benzene	ND U	J-	ug/kg	0.52	0.17	1
Toluene	ND L	JJ-	ug/kg	1.0	0.56	1
Ethylbenzene	ND U	JJ-	ug/kg	1.0	0.15	1
Chloromethane	ND		ug/kg	4.2	0.97	1
Bromomethane	ND		ug/kg	2.1	0.60	1
Vinyl chloride	ND		ug/kg	1.0	0.35	1
Chloroethane	ND		ug/kg	2.1	0.47	1
1,1-Dichloroethene	ND		ug/kg	1.0	0.25	1
trans-1,2-Dichloroethene	ND U	 -	ug/kg	1.6	0.14	1
Trichloroethene	ND U	J-	ug/kg	0.52	0.14	1
1,2-Dichlorobenzene	ND U	J-	ug/kg	2.1	0.15	1

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-01 Date Collected: 12/27/24 14:00

Client ID: EB-01 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low	- Westborough Lab					
1,3-Dichlorobenzene	ND U.	J-	ug/kg	2.1	0.15	1
1,4-Dichlorobenzene	ND U	J-	ug/kg	2.1	0.18	1
Methyl tert butyl ether	ND		ug/kg	2.1	0.21	1
p/m-Xylene	ND U.	J-	ug/kg	2.1	0.58	1
o-Xylene	ND U.	J-	ug/kg	1.0	0.30	1
Xylenes, Total	ND		ug/kg	1.0	0.30	1
cis-1,2-Dichloroethene	ND U.	J-	ug/kg	1.0	0.18	1
Styrene	ND U	J-	ug/kg	1.0	0.20	1
Dichlorodifluoromethane	ND		ug/kg	10	0.95	1
Acetone	9.9	J	ug/kg	10	5.0	1
Carbon disulfide	ND		ug/kg	10	4.7	1
2-Butanone	ND		ug/kg	10	2.3	1
4-Methyl-2-pentanone	ND		ug/kg	10	1.3	1
2-Hexanone	ND U	IJ-	ug/kg	10	1.2	1
Bromochloromethane	ND		ug/kg	2.1	0.21	1
1,2-Dibromoethane	ND	JJ-	ug/kg	1.0	0.29	1
n-Butylbenzene	ND (JR	ug/kg	1.0	0.17	1
sec-Butylbenzene	ND (JJ-	ug/kg	1.0	0.15	1
tert-Butylbenzene	ND (JJ-	ug/kg	2.1	0.12	1
1,2-Dibromo-3-chloropropane	ND	UJ-	ug/kg	3.1	1.0	1
Isopropylbenzene	ND	UJ-	ug/kg	1.0	0.11	1
p-Isopropyltoluene	ND	UJ-	ug/kg	1.0	0.11	1
n-Propylbenzene	ND (JJ-	ug/kg	1.0	0.18	1
1,2,3-Trichlorobenzene	ND	JR	ug/kg	2.1	0.33	1
1,2,4-Trichlorobenzene	ND (JR	ug/kg	2.1	0.28	1
1,3,5-Trimethylbenzene	ND U	JJ-	ug/kg	2.1	0.20	1
1,2,4-Trimethylbenzene	ND (JJ-	ug/kg	2.1	0.35	1
Methyl Acetate	ND		ug/kg	4.2	0.99	1
Cyclohexane	ND L	JJ-	ug/kg	10	0.56	1
Freon-113	ND		ug/kg	4.2	0.72	1
Methyl cyclohexane	ND l	JJ-	ug/kg	4.2	0.63	1

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-01 Date Collected: 12/27/24 14:00

Client ID: EB-01 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by EPA 5035 Low - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	93	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	103	70-130

L2476274

01/24/25

12/27/24 14:15

Not Specified

12/27/24

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected:

Date Received:

Field Prep:

SAMPLE RESUL

Lab ID: L2476274-02 Client ID: ESW-01

Complete antique E0.54.CANIAL CT LYON

Sample Location: 52-54 CANAL ST. LYONS, NEW YORK

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260D
Analytical Date: 01/03/25 16:08

Analyst: LAC Percent Solids: 82%

1,1-Dichloroethane ND ug/kg 0.99 0.14 1 Chloroform ND ug/kg 1.5 0.14 1 Carbon tetrachloride ND ug/kg 0.99 0.23 1 1,2-Dichloropropane ND ug/kg 0.99 0.12 1 Dibromochloromethane ND ug/kg 0.99 0.14 1 1,12-Trichloroethane ND ug/kg 0.99 0.26 1 Tetrachloroethane ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichloroftluoromethane ND ug/kg 0.49 0.12 1 Trichloroethane ND ug/kg 0.99 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/kg 0.99 0.14 1 Chloroform ND ug/kg 1.5 0.14 1 Carbon tetrachloride ND ug/kg 0.99 0.23 1 1,2-Dichloropropane ND ug/kg 0.99 0.12 1 Dibromochloromethane ND ug/kg 0.99 0.12 1 1,1,2-Trichloroethane ND ug/kg 0.99 0.26 1 Tetrachloroethane ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofuloromethane ND ug/kg 0.49 0.12 1 Trichloroethane ND ug/kg 0.99 0.25 1 1,1,2-Dichloroethane ND ug/kg 0.99 0.25 1 1,1-1,1-Trichloroethane ND ug/kg 0.49 0.11 1 Bromodichloromethane ND ug/kg 0.49	Volatile Organics by EPA 5035 Low	v - Westborough Lab					
Chloroform ND ug/kg 1.5 0.14 1 Carbon tetrachloride ND ug/kg 0.99 0.23 1 1,2-Dichloropropane ND ug/kg 0.99 0.12 1 Dibromochloromethane ND ug/kg 0.99 0.14 1 1,1,2-Trichloroethane ND ug/kg 0.99 0.26 1 1,1,2-Trichloroethane ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichloroethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.99 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49	Methylene chloride	ND		ug/kg	4.9	2.2	1
Carbon tetrachloride ND ug/kg 0.99 0.23 1 1,2-Dichloropropane ND ug/kg 0.99 0.12 1 Dibromochloromethane ND ug/kg 0.99 0.14 1 1,1,2-Trichloroethane ND ug/kg 0.99 0.26 1 Tetrachloroethane ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorothane ND ug/kg 0.49 0.12 1 Trichloroethane ND ug/kg 0.99 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.99 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.16 1 Bromodichloropropene ND ug/kg 0.49 0.16 1 sien-1,3-Dichloropropene ND ug/kg 0	1,1-Dichloroethane	ND		ug/kg	0.99	0.14	1
1,2-Dichloropropane ND ug/kg 0.99 0.12 1 Dibromochloromethane ND ug/kg 0.99 0.14 1 1,1,2-Trichloroethane ND ug/kg 0.99 0.26 1 Tetrachloroethane ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 3.9 0.68 1 Trichloroethane ND ug/kg 0.99 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.16 1 Bromodichloropropene ND ug/kg 0.99 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.99 0.24 1 Bromofem ND ug/kg 0.49 0.16 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.4	Chloroform	ND		ug/kg	1.5	0.14	1
Dibromochloromethane ND ug/kg 0.99 0.14 1 1,1,2-Trichloroethane ND ug/kg 0.99 0.26 1 Tetrachloroethane ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.99 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.16 1 Bromodichloropropene ND ug/kg 0.99 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 1,1,2,2-Tetrachloroethane ND ug/kg	Carbon tetrachloride	ND		ug/kg	0.99	0.23	1
1,1,2-Trichloroethane ND ug/kg 0.99 0.26 1 Tetrachloroethene ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.99 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.16 1 Bromodichloropropene ND ug/kg 0.99 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.99 0.54	1,2-Dichloropropane	ND		ug/kg	0.99	0.12	1
Tetrachloroethene ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.99 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 Bromodichloropropene ND ug/kg 0.99 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.99 0.54	Dibromochloromethane	ND		ug/kg	0.99	0.14	1
Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.99 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 Bromofichloropropene ND ug/kg 0.99 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.99 0.54 1 Ethylbenzene ND ug/kg 0.99 0.14 <	1,1,2-Trichloroethane	ND		ug/kg	0.99	0.26	1
Trichlorofluoromethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.99 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.99 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.99 0.54 1 Ethylbenzene ND ug/kg 0.99 0.14 1 Chloromethane ND ug/kg 2.0 0.57	Tetrachloroethene	ND		ug/kg	0.49	0.19	1
1,2-Dichloroethane ND ug/kg 0.99 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.99 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.99 0.54 1 Ethylbenzene ND ug/kg 0.99 0.14 1 Chloromethane ND ug/kg 2.0 0.57 1 Winyl chloride ND ug/kg 0.99 0.33 1 Chloroethane ND ug/kg 0.99 0.23 <t< td=""><td>Chlorobenzene</td><td>ND</td><td></td><td>ug/kg</td><td>0.49</td><td>0.12</td><td>1</td></t<>	Chlorobenzene	ND		ug/kg	0.49	0.12	1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/kg	3.9	0.68	1
Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.99 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.99 0.54 1 Ethylbenzene ND ug/kg 0.99 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.99 0.33 1 Chloroethane ND ug/kg 0.99 0.23 1 1,1-Dichloroethene ND ug/kg 0.99 0.23 1	1,2-Dichloroethane	ND		ug/kg	0.99	0.25	1
trans-1,3-Dichloropropene ND ug/kg 0.99 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.99 0.54 1 Ethylbenzene ND ug/kg 0.99 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.99 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.99 0.23 1 trans-1,2-Dichloroethene ND ug/kg 0.49 0.14 1 <td>1,1,1-Trichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.49</td> <td>0.16</td> <td>1</td>	1,1,1-Trichloroethane	ND		ug/kg	0.49	0.16	1
cis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.99 0.16 1 Toluene ND ug/kg 0.99 0.54 1 Ethylbenzene ND ug/kg 0.99 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.99 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.99 0.23 1 trans-1,2-Dichloroethene ND ug/kg 0.49 0.14 1 Trichloroethene ND ug/kg 0.49 0.14 1 <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.49</td> <td>0.11</td> <td>1</td>	Bromodichloromethane	ND		ug/kg	0.49	0.11	1
Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.99 0.54 1 Ethylbenzene ND ug/kg 0.99 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.99 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.99 0.23 1 trans-1,2-Dichloroethene ND ug/kg 1.5 0.14 1 Trichloroethene ND ug/kg 0.49 0.14 1	trans-1,3-Dichloropropene	ND		ug/kg	0.99	0.27	1
1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.99 0.54 1 Ethylbenzene ND ug/kg 0.99 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.99 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.99 0.23 1 trans-1,2-Dichloroethene ND ug/kg 1.5 0.14 1 Trichloroethene ND ug/kg 0.49 0.14 1	cis-1,3-Dichloropropene	ND		ug/kg	0.49	0.16	1
Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.99 0.54 1 Ethylbenzene ND ug/kg 0.99 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.99 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.99 0.23 1 trans-1,2-Dichloroethene ND ug/kg 1.5 0.14 1 Trichloroethene ND ug/kg 0.49 0.14 1	Bromoform	ND		ug/kg	3.9	0.24	1
Toluene ND ug/kg 0.99 0.54 1 Ethylbenzene ND ug/kg 0.99 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.99 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.99 0.23 1 trans-1,2-Dichloroethene ND ug/kg 1.5 0.14 1 Trichloroethene ND ug/kg 0.49 0.14 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	0.49	0.16	1
Ethylbenzene ND ug/kg 0.99 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.99 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.99 0.23 1 trans-1,2-Dichloroethene ND ug/kg 1.5 0.14 1 Trichloroethene ND ug/kg 0.49 0.14 1	Benzene	ND		ug/kg	0.49	0.16	1
Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.99 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.99 0.23 1 trans-1,2-Dichloroethene ND ug/kg 1.5 0.14 1 Trichloroethene ND ug/kg 0.49 0.14 1	Toluene	ND		ug/kg	0.99	0.54	1
Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.99 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.99 0.23 1 trans-1,2-Dichloroethene ND ug/kg 1.5 0.14 1 Trichloroethene ND ug/kg 0.49 0.14 1	Ethylbenzene	ND		ug/kg	0.99	0.14	1
Vinyl chloride ND ug/kg 0.99 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.99 0.23 1 trans-1,2-Dichloroethene ND ug/kg 1.5 0.14 1 Trichloroethene ND ug/kg 0.49 0.14 1	Chloromethane	ND		ug/kg	3.9	0.92	1
Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.99 0.23 1 trans-1,2-Dichloroethene ND ug/kg 1.5 0.14 1 Trichloroethene ND ug/kg 0.49 0.14 1	Bromomethane	ND		ug/kg	2.0	0.57	1
1,1-Dichloroethene ND ug/kg 0.99 0.23 1 trans-1,2-Dichloroethene ND ug/kg 1.5 0.14 1 Trichloroethene ND ug/kg 0.49 0.14 1	Vinyl chloride	ND		ug/kg	0.99	0.33	1
trans-1,2-Dichloroethene ND ug/kg 1.5 0.14 1 Trichloroethene ND ug/kg 0.49 0.14 1	Chloroethane	ND		ug/kg	2.0	0.44	1
Trichloroethene ND ug/kg 0.49 0.14 1	1,1-Dichloroethene	ND		ug/kg	0.99	0.23	1
<u> </u>	trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	1
1,2-Dichlorobenzene ND ug/kg 2.0 0.14 1	Trichloroethene	ND		ug/kg	0.49	0.14	1
	1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14	1

Project Name: 52-54 CANAL ST, LYONS **Lab Number:** L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-02 Date Collected: 12/27/24 14:15

Client ID: ESW-01 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	2.0	0.14	1	
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17	1	
Methyl tert butyl ether	ND		ug/kg	2.0	0.20	1	
p/m-Xylene	ND		ug/kg	2.0	0.55	1	
o-Xylene	ND		ug/kg	0.99	0.29	1	
Xylenes, Total	ND		ug/kg	0.99	0.29	1	
cis-1,2-Dichloroethene	ND		ug/kg	0.99	0.17	1	
Styrene	ND		ug/kg	0.99	0.19	1	
Dichlorodifluoromethane	ND		ug/kg	9.9	0.90	1	
Acetone	ND		ug/kg	9.9	4.7	1	
Carbon disulfide	ND		ug/kg	9.9	4.5	1	
2-Butanone	ND		ug/kg	9.9	2.2	1	
4-Methyl-2-pentanone	ND		ug/kg	9.9	1.3	1	
2-Hexanone	ND		ug/kg	9.9	1.2	1	
Bromochloromethane	ND		ug/kg	2.0	0.20	1	
1,2-Dibromoethane	ND		ug/kg	0.99	0.28	1	
n-Butylbenzene	ND		ug/kg	0.99	0.16	1	
sec-Butylbenzene	ND		ug/kg	0.99	0.14	1	
tert-Butylbenzene	ND		ug/kg	2.0	0.12	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	0.98	1	
Isopropylbenzene	ND		ug/kg	0.99	0.11	1	
p-Isopropyltoluene	ND		ug/kg	0.99	0.11	1	
n-Propylbenzene	ND		ug/kg	0.99	0.17	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.32	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33	1	
Methyl Acetate	ND		ug/kg	3.9	0.94	1	
Cyclohexane	ND		ug/kg	9.9	0.54	1	
Freon-113	ND		ug/kg	3.9	0.68	1	
Methyl cyclohexane	ND		ug/kg	3.9	0.59	1	

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-02 Date Collected: 12/27/24 14:15

Client ID: ESW-01 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by EPA 5035 Low - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	110	70-130	

L2476274

01/24/25

Project Name: 52-54 CANAL ST, LYONS

L2476274-03

Project Number: 037112

SAMPLE RESULTS

Date Collected: 12/27/24 14:30

Lab Number:

Report Date:

Date Received: 12/27/24 Client ID: ESW-02 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Soil Analytical Method: 1,8260D Analytical Date: 01/03/25 16:34

Analyst: LAC 91% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
Methylene chloride	ND		ug/kg	5.3	2.4	1	
1,1-Dichloroethane	ND		ug/kg	1.0	0.15	1	
Chloroform	ND		ug/kg	1.6	0.15	1	
Carbon tetrachloride	ND		ug/kg	1.0	0.24	1	
1,2-Dichloropropane	ND		ug/kg	1.0	0.13	1	
Dibromochloromethane	ND		ug/kg	1.0	0.15	1	
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.28	1	
Tetrachloroethene	ND		ug/kg	0.53	0.21	1	
Chlorobenzene	ND		ug/kg	0.53	0.13	1	
Trichlorofluoromethane	ND		ug/kg	4.2	0.74	1	
1,2-Dichloroethane	ND		ug/kg	1.0	0.27	1	
1,1,1-Trichloroethane	ND		ug/kg	0.53	0.18	1	
Bromodichloromethane	ND		ug/kg	0.53	0.12	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.29	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.53	0.17	1	
Bromoform	ND		ug/kg	4.2	0.26	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.53	0.18	1	
Benzene	ND		ug/kg	0.53	0.18	1	
Toluene	ND		ug/kg	1.0	0.57	1	
Ethylbenzene	ND		ug/kg	1.0	0.15	1	
Chloromethane	ND		ug/kg	4.2	0.99	1	
Bromomethane	ND		ug/kg	2.1	0.62	1	
Vinyl chloride	ND		ug/kg	1.0	0.35	1	
Chloroethane	ND		ug/kg	2.1	0.48	1	
1,1-Dichloroethene	ND		ug/kg	1.0	0.25	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.14	1	
Trichloroethene	ND		ug/kg	0.53	0.14	1	
1,2-Dichlorobenzene	ND		ug/kg	2.1	0.15	1	

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-03 Date Collected: 12/27/24 14:30

Client ID: ESW-02 Date Received: 12/27/24

Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lov	w - Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	2.1	0.16	1
1,4-Dichlorobenzene	ND		ug/kg	2.1	0.18	1
Methyl tert butyl ether	ND		ug/kg	2.1	0.10	1
p/m-Xylene	ND		ug/kg	2.1	0.59	1
o-Xylene	ND		ug/kg	1.0	0.31	1
Xylenes, Total	ND		ug/kg	1.0	0.31	1
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	1
Styrene	ND		ug/kg	1.0	0.10	1
Dichlorodifluoromethane	ND		ug/kg	10	0.97	1
Acetone	ND		ug/kg	10	5.1	1
Carbon disulfide	ND		ug/kg	10	4.8	 1
2-Butanone	ND		ug/kg	10	2.4	 1
4-Methyl-2-pentanone	ND		ug/kg	10	1.4	 1
2-Hexanone	ND		ug/kg	10	1.2	 1
Bromochloromethane	ND		ug/kg	2.1	0.22	1
1,2-Dibromoethane	ND		ug/kg	1.0	0.30	1
n-Butylbenzene	ND		ug/kg	1.0	0.18	 1
sec-Butylbenzene	ND		ug/kg	1.0	0.15	1
tert-Butylbenzene	ND		ug/kg	2.1	0.12	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.2	1.0	1
Isopropylbenzene	ND		ug/kg	1.0	0.12	1
p-Isopropyltoluene	ND		ug/kg	1.0	0.12	1
n-Propylbenzene	ND		ug/kg	1.0	0.18	1
1,2,3-Trichlorobenzene	ND		ug/kg	2.1	0.34	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.1	0.29	1
1,3,5-Trimethylbenzene	ND		ug/kg	2.1	0.20	1
1,2,4-Trimethylbenzene	ND		ug/kg	2.1	0.35	1
Methyl Acetate	ND		ug/kg	4.2	1.0	1
Cyclohexane	ND		ug/kg	10	0.58	1
Freon-113	ND		ug/kg	4.2	0.73	1
Methyl cyclohexane	ND		ug/kg	4.2	0.64	1
			5 5		-	

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-03 Date Collected: 12/27/24 14:30

Client ID: ESW-02 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by EPA 5035 Low - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	109	70-130	

L2476274

01/24/25

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

SAMPLE RESULTS

Date Collected: 12/27/24 14:00

Lab Number:

Report Date:

Lab ID: L2476274-01

Client ID: EB-01

Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Date Received: 12/27/24 Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8270E Analytical Date: 01/04/25 11:41

Analyst: JG 91% Percent Solids:

Extraction Method: EPA 3546 **Extraction Date:** 12/31/24 09:02

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - \	Westborough Lab						
Acenaphthene	ND		ug/kg	140	18.	1	
Hexachlorobenzene	ND		ug/kg	110	20.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	160	24.	1	
2-Chloronaphthalene	ND		ug/kg	180	18.	1	
3,3'-Dichlorobenzidine	ND	UR	ug/kg	180	48.	1	
2,4-Dinitrotoluene	ND		ug/kg	180	36.	1	
2,6-Dinitrotoluene	ND		ug/kg	180	31.	1	
Fluoranthene	58	J	ug/kg	110	20.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	180	19.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	180	27.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	210	30.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	190	18.	1	
Hexachlorobutadiene	ND		ug/kg	180	26.	1	
Hexachlorocyclopentadiene	ND		ug/kg	510	160	1	
Hexachloroethane	ND		ug/kg	140	29.	1	
Isophorone	ND		ug/kg	160	23.	1	
Naphthalene	ND		ug/kg	180	22.	1	
Nitrobenzene	ND		ug/kg	160	26.	1	
NDPA/DPA	ND		ug/kg	140	20.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	180	28.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	62.	1	
Butyl benzyl phthalate	ND		ug/kg	180	45.	1	
Di-n-butylphthalate	ND		ug/kg	180	34.	1	
Di-n-octylphthalate	ND		ug/kg	180	61.	1	
Diethyl phthalate	ND		ug/kg	180	16.	1	
Dimethyl phthalate	ND		ug/kg	180	38.	1	
Benzo(a)anthracene	39	J	ug/kg	110	20.	1	
Benzo(a)pyrene	ND		ug/kg	140	44.	1	

Project Name: 52-54 CANAL ST, LYONS **Lab Number:** L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-01 Date Collected: 12/27/24 14:00

Client ID: EB-01 Date Received: 12/27/24

Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Benzo(b)fluoranthene	43	J	ug/kg	110	30.	1
Benzo(k)fluoranthene	ND		ug/kg	110	29.	1
Chrysene	35	J	ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	140	28.	1
Anthracene	ND		ug/kg	110	35.	1
Benzo(ghi)perylene	30	J	ug/kg	140	21.	1
Fluorene	ND		ug/kg	180	17.	1
Phenanthrene	34	J	ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	26	J	ug/kg	140	25.	1
Pyrene	52	J	ug/kg	110	18.	1
Biphenyl	ND		ug/kg	410	23.	1
Aniline	ND		ug/kg	210	84.	1
4-Chloroaniline	ND		ug/kg	180	32.	1
2-Nitroaniline	ND		ug/kg	180	34.	1
3-Nitroaniline	ND		ug/kg	180	34.	1
4-Nitroaniline	ND		ug/kg	180	74.	1
Dibenzofuran	ND		ug/kg	180	17.	1
2-Methylnaphthalene	ND		ug/kg	210	22.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	180	19.	1
Acetophenone	ND		ug/kg	180	22.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	34.	1
p-Chloro-m-cresol	ND		ug/kg	180	27.	1
2-Chlorophenol	ND		ug/kg	180	21.	1
2,4-Dichlorophenol	ND		ug/kg	160	29.	1
2,4-Dimethylphenol	ND		ug/kg	180	59.	1
2-Nitrophenol	ND		ug/kg	390	67.	1
4-Nitrophenol	ND		ug/kg	250	73.	1
2,4-Dinitrophenol	ND U		ug/kg	860	83.	1
4,6-Dinitro-o-cresol	ND U	R	ug/kg	460	86.	1
Pentachlorophenol	ND		ug/kg	140	39.	1
Phenol	ND		ug/kg	180	27.	1
2-Methylphenol	ND		ug/kg	180	28.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	260	28.	1
2,4,5-Trichlorophenol	ND		ug/kg	180	34.	1
Carbazole	ND		ug/kg	180	17.	1
Atrazine	ND		ug/kg	140	63.	1

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-01 Date Collected: 12/27/24 14:00

Client ID: EB-01 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Westborough Lab					
Benzaldehyde	ND		ug/kg	240	48.	1
Caprolactam	ND		ug/kg	180	54.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	180	36.	1
1,4-Dioxane	ND U	J-	ug/kg	27	8.2	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	67	25-120	
Phenol-d6	66	10-120	
Nitrobenzene-d5	64	23-120	
2-Fluorobiphenyl	59	30-120	
2,4,6-Tribromophenol	60	10-136	
4-Terphenyl-d14	57	18-120	

L2476274

01/24/25

Project Name: 52-54 CANAL ST, LYONS

01/04/25 11:16

Project Number: 037112

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2476274-02 Date Collected: 12/27/24 14:15

Date Received: Client ID: ESW-01 12/27/24 52-54 CANAL ST. LYONS, NEW YORK Sample Location: Field Prep:

Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 12/31/24 09:02 Analytical Method: 1,8270E

Analyst: JG 82% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Acenaphthene	ND		ug/kg	160	21.	1
Hexachlorobenzene	ND		ug/kg	120	22.	1
Bis(2-chloroethyl)ether	ND		ug/kg	180	27.	1
2-Chloronaphthalene	ND		ug/kg	200	20.	1
3,3'-Dichlorobenzidine	ND		ug/kg	200	53.	1
2,4-Dinitrotoluene	ND		ug/kg	200	40.	1
2,6-Dinitrotoluene	ND		ug/kg	200	34.	1
Fluoranthene	ND		ug/kg	120	23.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	200	21.	1
4-Bromophenyl phenyl ether	ND		ug/kg	200	30.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	240	34.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	220	20.	1
Hexachlorobutadiene	ND		ug/kg	200	29.	1
Hexachlorocyclopentadiene	ND		ug/kg	570	180	1
Hexachloroethane	ND		ug/kg	160	32.	1
Isophorone	ND		ug/kg	180	26.	1
Naphthalene	ND		ug/kg	200	24.	1
Nitrobenzene	ND		ug/kg	180	30.	1
NDPA/DPA	ND		ug/kg	160	23.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	200	31.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	200	69.	1
Butyl benzyl phthalate	ND		ug/kg	200	50.	1
Di-n-butylphthalate	ND		ug/kg	200	38.	1
Di-n-octylphthalate	ND		ug/kg	200	68.	1
Diethyl phthalate	ND		ug/kg	200	18.	1
Dimethyl phthalate	ND		ug/kg	200	42.	1
Benzo(a)anthracene	ND		ug/kg	120	22.	1
Benzo(a)pyrene	ND		ug/kg	160	49.	1

L2476274

01/24/25

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

SAMPLE RESULTS

Date Collected: 12/27/24 14:15

Lab Number:

Report Date:

Lab ID: L2476274-02

Client ID: Date Received: 12/27/24 ESW-01 Not Specified

Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Benzo(b)fluoranthene	ND		ug/kg	120	34.	1
Benzo(k)fluoranthene	ND		ug/kg	120	32.	1
Chrysene	ND		ug/kg	120	21.	1
Acenaphthylene	ND		ug/kg	160	31.	1
Anthracene	ND		ug/kg	120	39.	1
Benzo(ghi)perylene	ND		ug/kg	160	24.	1
Fluorene	ND		ug/kg	200	19.	1
Phenanthrene	ND		ug/kg	120	24.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	23.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	28.	1
Pyrene	ND		ug/kg	120	20.	1
Biphenyl	ND		ug/kg	460	26.	1
Aniline	ND		ug/kg	240	94.	1
4-Chloroaniline	ND		ug/kg	200	36.	1
2-Nitroaniline	ND		ug/kg	200	38.	1
3-Nitroaniline	ND		ug/kg	200	38.	1
4-Nitroaniline	ND		ug/kg	200	83.	1
Dibenzofuran	ND		ug/kg	200	19.	1
2-Methylnaphthalene	ND		ug/kg	240	24.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	200	21.	1
Acetophenone	ND		ug/kg	200	25.	1
2,4,6-Trichlorophenol	ND		ug/kg	120	38.	1
p-Chloro-m-cresol	ND		ug/kg	200	30.	1
2-Chlorophenol	ND		ug/kg	200	24.	1
2,4-Dichlorophenol	ND		ug/kg	180	32.	1
2,4-Dimethylphenol	ND		ug/kg	200	66.	1
2-Nitrophenol	ND		ug/kg	430	75.	1
4-Nitrophenol	ND		ug/kg	280	82.	1
2,4-Dinitrophenol	ND		ug/kg	960	93.	1
4,6-Dinitro-o-cresol	ND		ug/kg	520	96.	1
Pentachlorophenol	ND		ug/kg	160	44.	1
Phenol	ND		ug/kg	200	30.	1
2-Methylphenol	ND		ug/kg	200	31.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	290	31.	1
2,4,5-Trichlorophenol	ND		ug/kg	200	38.	1
Carbazole	ND		ug/kg	200	19.	1
Atrazine	ND		ug/kg	160	70.	1

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-02 Date Collected: 12/27/24 14:15

Client ID: ESW-01 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Benzaldehyde	ND		ug/kg	260	54.	1	
Caprolactam	ND		ug/kg	200	61.	1	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	200	40.	1	
1,4-Dioxane	ND UJ	_	ug/kg	30	9.2	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	62	25-120	
Phenol-d6	62	10-120	
Nitrobenzene-d5	61	23-120	
2-Fluorobiphenyl	59	30-120	
2,4,6-Tribromophenol	59	10-136	
4-Terphenyl-d14	54	18-120	

L2476274

01/24/25

Project Name: 52-54 CANAL ST, LYONS

Project Number: 037112

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2476274-03 Date Collected: 12/27/24 14:30

Date Received: Client ID: ESW-02 12/27/24 Sample Location: Field Prep: 52-54 CANAL ST. LYONS, NEW YORK Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 12/31/24 09:02 Analytical Method: 1,8270E

Analytical Date: 01/03/25 02:26

Analyst: SMZ 91% Percent Solids:

	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
Acenaphthene	ND		ug/kg	140	18.	1
Hexachlorobenzene	ND		ug/kg	110	20.	1
Bis(2-chloroethyl)ether	ND		ug/kg	160	24.	1
2-Chloronaphthalene	ND		ug/kg	180	18.	1
3,3'-Dichlorobenzidine	ND		ug/kg	180	48.	1
2,4-Dinitrotoluene	ND		ug/kg	180	36.	1
2,6-Dinitrotoluene	ND		ug/kg	180	31.	1
Fluoranthene	ND		ug/kg	110	21.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	180	19.	1
4-Bromophenyl phenyl ether	ND		ug/kg	180	27.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	31.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	190	18.	1
Hexachlorobutadiene	ND		ug/kg	180	26.	1
Hexachlorocyclopentadiene	ND		ug/kg	510	160	1
Hexachloroethane	ND		ug/kg	140	29.	1
Isophorone	ND		ug/kg	160	23.	1
Naphthalene	ND		ug/kg	180	22.	1
Nitrobenzene	ND		ug/kg	160	26.	1
NDPA/DPA	ND		ug/kg	140	20.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	180	28.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	62.	1
Butyl benzyl phthalate	ND		ug/kg	180	45.	1
Di-n-butylphthalate	ND		ug/kg	180	34.	1
Di-n-octylphthalate	ND		ug/kg	180	61.	1
Diethyl phthalate	ND		ug/kg	180	17.	1
Dimethyl phthalate	ND		ug/kg	180	38.	1
Benzo(a)anthracene	ND		ug/kg	110	20.	1
Benzo(a)pyrene	ND		ug/kg	140	44.	1

Project Name: 52-54 CANAL ST, LYONS **Lab Number:** L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-03 Date Collected: 12/27/24 14:30

Client ID: ESW-02 Date Received: 12/27/24

Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Benzo(b)fluoranthene	ND		ug/kg	110	30.	1
Benzo(k)fluoranthene	ND		ug/kg	110	29.	1
Chrysene	ND		ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	140	28.	1
Anthracene	ND		ug/kg	110	35.	1
Benzo(ghi)perylene	ND		ug/kg	140	21.	1
Fluorene	ND		ug/kg	180	17.	1
Phenanthrene	ND		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	25.	1
Pyrene	ND		ug/kg	110	18.	1
Biphenyl	ND		ug/kg	410	23.	1
Aniline	ND		ug/kg	220	85.	1
4-Chloroaniline	ND		ug/kg	180	33.	1
2-Nitroaniline	ND		ug/kg	180	35.	1
3-Nitroaniline	ND		ug/kg	180	34.	1
4-Nitroaniline	ND		ug/kg	180	74.	1
Dibenzofuran	ND		ug/kg	180	17.	1
2-Methylnaphthalene	ND		ug/kg	220	22.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	180	19.	1
Acetophenone	ND		ug/kg	180	22.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	34.	1
p-Chloro-m-cresol	ND		ug/kg	180	27.	1
2-Chlorophenol	ND		ug/kg	180	21.	1
2,4-Dichlorophenol	ND		ug/kg	160	29.	1
2,4-Dimethylphenol	ND		ug/kg	180	59.	1
2-Nitrophenol	ND		ug/kg	390	67.	1
4-Nitrophenol	ND		ug/kg	250	73.	1
2,4-Dinitrophenol	ND		ug/kg	860	84.	1
4,6-Dinitro-o-cresol	ND		ug/kg	470	86.	1
Pentachlorophenol	ND		ug/kg	140	39.	1
Phenol	ND		ug/kg	180	27.	1
2-Methylphenol	ND		ug/kg	180	28.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	260	28.	1
2,4,5-Trichlorophenol	ND		ug/kg	180	34.	1
Carbazole	ND		ug/kg	180	17.	1
Atrazine	ND		ug/kg	140	63.	1

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-03 Date Collected: 12/27/24 14:30

Client ID: ESW-02 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
Benzaldehyde	ND		ug/kg	240	48.	1
Caprolactam	ND		ug/kg	180	54.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	180	36.	1
1.4-Dioxane	ND II.	L	ua/ka	27	8.2	1

34	
٠.	25-120
36	10-120
27	23-120
31	30-120
33	10-136
36	18-120
	36 27 31 33

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

SAMPLE RESULTS

Lab ID: L2476274-01 Date Collected: 12/27/24 14:00

Client ID: EB-01 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

•

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 01/02/25 08:00

Analytical Date: 01/03/25 01:06 Cleanup Method: EPA 3665A
Analyst: MEO Cleanup Date: 01/02/25
Percent Solids: 91% Cleanup Method: EPA 3660B

lids: 91% Cleanup Nietriod. EFA 3000 Cleanup Date: 01/02/25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by (GC - Westborough Lab						
Aroclor 1016	ND		ug/kg	51.3	4.56	1	А
Aroclor 1221	ND		ug/kg	51.3	5.14	1	Α
Aroclor 1232	ND		ug/kg	51.3	10.9	1	Α
Aroclor 1242	ND		ug/kg	51.3	6.92	1	Α
Aroclor 1248	ND		ug/kg	51.3	7.70	1	Α
Aroclor 1254	ND		ug/kg	51.3	5.61	1	Α
Aroclor 1260	ND		ug/kg	51.3	9.48	1	Α
Aroclor 1262	ND		ug/kg	51.3	6.52	1	Α
Aroclor 1268	ND		ug/kg	51.3	5.32	1	Α
PCBs, Total	ND		ug/kg	51.3	4.56	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55		30-150	Α
Decachlorobiphenyl	55		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	55		30-150	В
Decachlorobiphenyl	56		30-150	В

Project Name: Lab Number: 52-54 CANAL ST, LYONS L2476274

Project Number: 037112 **Report Date:** 01/24/25

SAMPLE RESULTS

Lab ID: Date Collected: L2476274-02 12/27/24 14:15

Client ID: Date Received: 12/27/24 ESW-01 Sample Location: Field Prep: Not Specified

52-54 CANAL ST. LYONS, NEW YORK

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 01/02/25 08:00 Analytical Method: 1,8082A Cleanup Method: EPA 3665A

Analytical Date: 01/03/25 01:28 Cleanup Date: 01/02/25 Analyst: MEO Cleanup Method: EPA 3660B 82% Percent Solids:

Cleanup Date: 01/02/25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	estborough Lab						
Aroclor 1016	ND		ug/kg	57.1	5.07	1	Α
Aroclor 1221	ND		ug/kg	57.1	5.72	1	Α
Aroclor 1232	ND		ug/kg	57.1	12.1	1	Α
Aroclor 1242	ND		ug/kg	57.1	7.69	1	Α
Aroclor 1248	ND		ug/kg	57.1	8.56	1	Α
Aroclor 1254	ND		ug/kg	57.1	6.24	1	Α
Aroclor 1260	ND		ug/kg	57.1	10.5	1	Α
Aroclor 1262	ND		ug/kg	57.1	7.25	1	Α
Aroclor 1268	ND		ug/kg	57.1	5.91	1	Α
PCBs, Total	ND		ug/kg	57.1	5.07	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60		30-150	Α
Decachlorobiphenyl	63		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	58		30-150	В
Decachlorobiphenyl	60		30-150	В

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274

Project Number: 037112 Report Date: 01/24/25

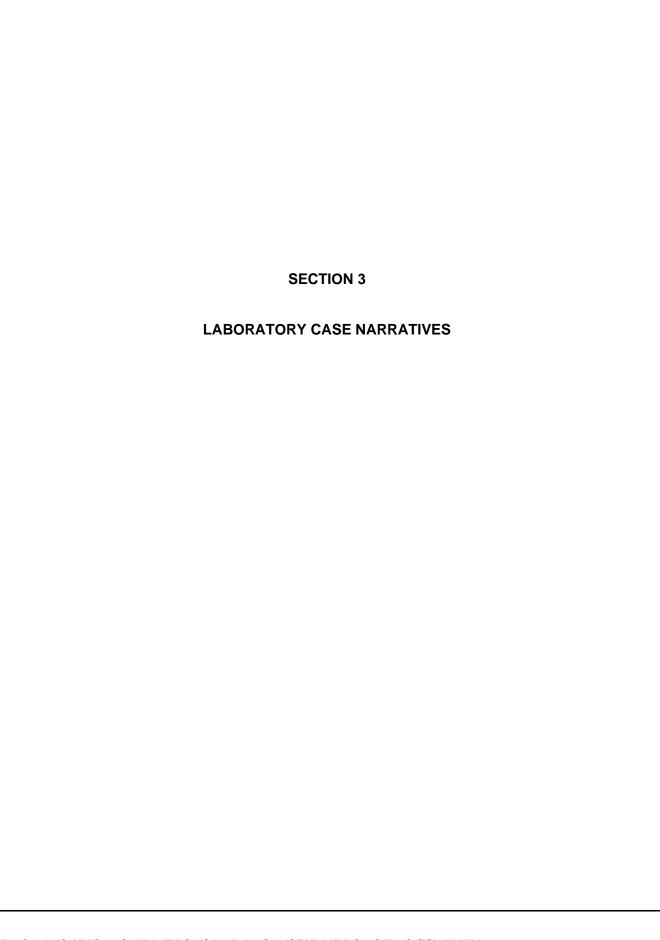
SAMPLE RESULTS

Lab ID: L2476274-03 Date Collected: 12/27/24 14:30

Client ID: ESW-02 Date Received: 12/27/24 Sample Location: 52-54 CANAL ST. LYONS, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 01/02/25 08:00


Analytical Date: 01/03/25 01:36 Cleanup Method: EPA 3665A
Analyst: MEO Cleanup Date: 01/02/25

Percent Solids: 91% Cleanup Method: EPA 3660B Cleanup Date: 01/02/25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC -	Westborough Lab						
Aroclor 1016	ND		ug/kg	50.5	4.48	1	Α
Aroclor 1221	ND		ug/kg	50.5	5.06	1	Α
Aroclor 1232	ND		ug/kg	50.5	10.7	1	Α
Aroclor 1242	ND		ug/kg	50.5	6.81	1	Α
Aroclor 1248	ND		ug/kg	50.5	7.58	1	Α
Aroclor 1254	ND		ug/kg	50.5	5.52	1	Α
Aroclor 1260	ND		ug/kg	50.5	9.33	1	Α
Aroclor 1262	ND		ug/kg	50.5	6.41	1	Α
Aroclor 1268	ND		ug/kg	50.5	5.23	1	Α
PCBs, Total	ND		ug/kg	50.5	4.48	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	59		30-150	Α
Decachlorobiphenyl	63		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	57		30-150	В
Decachlorobiphenyl	60		30-150	В

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274
Project Number: 037112 Report Date: 01/24/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: 52-54 CANAL ST, LYONS Lab Number: L2476274
Project Number: 037112 Report Date: 01/24/25

Case Narrative (continued)

Report Revision

January 24, 2025: At the client's request, the Volatile Organics and Semivolatile Organics reporting lists have been changed.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

The WG2015218-4/-5 MS/MSD recoveries, performed on L2476274-01, are below the acceptance criteria for 3,3'-dichlorobenzidine (13%/9%) due to the concentration of this compound in the MS/MSD falling below the reported detection limit.

The WG2015218-4/-5 MS/MSD recoveries, performed on L2476274-01, is below the acceptance criteria for 2,4-dinitrophenol (0%/0%) and 4,6-dinitro-o-cresol (7%); however, they have been identified as "difficult" analytes. The results of the associated sample are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

ENDOW Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative Date: 01/24/25

Pace

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426

Project Number: 037112 Report Date: 01/27/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Thouse contact Project Management at 500 of Porton Management.											

Please contact Project Management at 800-624-9220 with any questions

Serial_No:01272510:52

Project Name: 52-54 CANAL ST LYONS Lab Number: L2476426
Project Number: 037112 Report Date: 01/27/25

Case Narrative (continued)

Report Revision

January 27, 2025: At the client's request, the Volatile Organics and Semivolatile Organics reporting lists have been changed.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 01/27/25

Custen Walker Cristin Walker

SECTION 4 CHAIN-OF-CUSTODY RECORDS, RECEIPT INFORMATION, AND PROJECT CORRESPONDENCE

Desna	NEW YORK CHAIN OF CUSTODY	Service Centers Matmah, NJ 07430 35 Whitney Abony, NY 12205, 14 Walker W Tonawanda, NY 14150, 275 Cen	5	Page (ol	t			Rec'd	ial.	28	ALPHA Job #							
Westborough, MA 01581	Manufest, MA 02648	Project information		-		100	Charte	omtile						History Advantages				
# Watkup Dr #51_500-898-0020	B Walkup Dr. 320 Feebes Blvd 351, 586-998 8.221 FEL 508-82.19 509		1 Carriel 3	St Lynn				ASP	A		N	ASP-I	3	Same as Client	t Info			
1 - X 508-888-919.1	TAX 500-822-3288					la-be		EQui	9 (1 Fil	e)	N	EQui:	3 (4 File)	PON				
Chient Hatsmanner		Project Location: 52-54 Land St. Lyans New Yorks						Othe										
	· Energy comments		(Use Project name as Project #)						Hugide	METERNA	Deposit Sactrionnation							
Address. 100 S. C		Project Manager Kath	reine N	lelson			NY TOGS NY Part 375							Please identify below location of				
	See hester NY	ALPHAQuote #:	The state of the s						Standar	de	X	applicable disposal lac						
Phone: 535 - 44		Tem-Assund Your							ustricted	Use	П	Other		Disponal Facility	F1 881 F31 F81 F81 F81			
Fax		Standard	K	Due Date:			١ō	NY U	vnetrick	ed Use	_			□ NJ 1⊠	NY			
Email Cyangalia	(One bear sources			# of Days:			١Ħ	NYC :	Sownr D	ischar	ge .			Other				
These samples have b							ANA	Y349			-			Sample Filtration		Ž.S		
Other project specific														Done				
Please specify Metals	or TAL.					_	\$260)	(otr8)	8082	1				Lab to do				
							6		9	- 1				(Please Specify be	lowi			
ALPHA DIE ID			Colle	ection	C'-		3	SVACS	13					(Freese Specify Do	1011)			
(Latt Max Crob)	Sa	ample ID	Date	Time	Sample Matrix	Sampler's Initials	VOC.	2	好		ı			Sample Specific Com	mento			
76274-0	EB-01		12/27/24		50	RM	×	×	×				-	MS/MSD		/ 5		
INDES AND LOS	ESW-01		12/27/24		50	RM	X	×	X					113/16/		5		
- 73	ESW-02		12/27/24		50	RM	×	×	K	-					-	5		
- 545-	ESW-UZ		12/21/24	טנדו	30	N.		Î								>		
							 	_	H					-				
				_												-		
													- 0 5					
Pres Code	Cardaina: Code					<u> </u>												
A + HCI	P * Pinstic A * Amber Glass	Westboro: Certification N Mansfield: Certification N			Con	tainer Type	V, P	V, P A		V, PAA						Please print clear and completely. S	Samples (
C = MNO ₀ D = H ₆ SO ₄ E = NaOH	V = V(n) G = Glass B = Rectarin Cup				þ	reservativo	A, F	A	A					not be logged in a turnaround time of start until any am	dock will			
F = MeOH	C = Cube	Relinquished	By.	Date	Time		Receiv	ed B	<i>y</i> .			Date	Time	resolved. BY EXE	-			
G = NaHSO _a	C = Other E = Encore	Ryon Malia 73-	2	12/27/2			161		NC4		121	27/2		THIS COC, THE CLIENT				
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NeOH	D = BOD Bottle	W MOT PA	1 1			ROCH	ale David				100		Y 16:	TING READ AND AGREED				
O = Other		CA THE COME	<u>-1</u>	12/27/2	4 16:31 E 10 C	THE PARTY OF THE P	NC PACE				14	1/12	Filler	TERMS & CONDITIONS				
Form No. 91-25 HC (rev.)	30-Sect-20131	-			, , ,	=					121	15	0/00	(See reverse side	1.)			
The state of the state of the state of						l					1 -7			L .		_		

Westborough, MA 01581	NEW YORK GHAIN OF CUSTODY Marrefield, MA 02048	Albany, NY 12205: 14 Walker W Trouwanda, NY 14150- 275 Cod	wats, NJ 97439: 35 Whitney Rd, Bolte 6 http://www.nda.nly.new.nda.								131	12	4		ALPHA JOB#		
8 Welkup Or. TEL: 508-596-0226 FAX: 508-886-9193	120 Forties Blvd TEL 606-822-9300 FAX SON-622-3288	Project Name: 53 - 5 Project Location: 53 - 5	Project Name: 52 - 54 Canal St. Lyons, New York						i (1 File	a)			Same as Client Info				
Clant lifemation		Project # 03718					_	Other	-	THE OWNER OF THE OWNER O		_	Biograf Biographic				
The state of the s	Environmental								Requir	uma n	124		Discoved Site Information				
Address 100 S. C.L.	ohn Ave	Project Manager: Koy	the Crite	VIS 12017				MY 10	tandard	le:	_	NY CP			Please identify below location of applicable disposal facilities		
Sude 2330 P	Micheller W.	ALPHAQuo = 4	_	_	_	_			pricted I			Other	-31		Disposal Facility		
Phone: 585 - 44	1-3109	Turn-Around Tiese	(TS)	5- 6- 1					estricte		_	Ottivot			,		
FAX:	^ .	Standard		Oue Date											□ NJ 🕅 NY		
Email: Manmalla			<u>' </u>	# of Days		_			ewar Oi:	acnary	io.				Other:	med	
These samples have be							ANAI	.Y818	-	-				7.5	Sample Filtration	鵩	
Other project specific							VOCS (8340)	540x-(8270)	5 (8082)	1	/		/		☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	一 通 日本	
科学的			Call	ection	Sample	Sampler's	3	ğ	PCB			V	0			list.	
(Calc Use OH))	Si	ample tD	Date	Time	Matrix	Initials	12	N	9			/ ¥	11.		Sample Specific Comments		
* X5436- 01	EB-02		12/30/24	10/.20	50	RM	X	X	X		1	۵	1			5	
- 13	Ph. a.		12/30/24		50	RM	X	X	X		1	2	2			5555	
- 75	65W-03		12/30/24		50	RM	×		X			.	24			5	
- 184	ESW-04		12/20/24		30	RM	X	χ	X				7	1		5	
7/16	Envent Bl	nn th	12/30/24		SEIN	RM	×	R	6	_	1		1	1		7	
	United b	Her	angur 1	00.10	100								_	-		Ķ)	
			77.	12/3										-			
			M	1000								-					
														-			
Preservative Code* A > None B = HCl	Cantainer Code P = Plastic A = Amber Glass	Westboro Certification No: MA935 Contains Mansfield: Certification No: MA015			nteiner Type	V,P	A	A						Please print clearly, legib and completely. Samples not be logged in and			
C = MNO ₃ D = H ₂ SO ₄ E = NaOH	V = Voil G = Gloss B = Bacteris Cup				F	Preservativo	A,F	A	A						jurnaround time clock will start until any ambiguities		
F = MeOH	C = Cube	Relinquished	By:	, Dute	/Time	11	Receiv	ved BV				Date	/Time		resolved, BY EXECUTIN		
G = NeHSQ ₄	O = Other E = Encore	Rus Mel - 12	~ 1 -	12/30/2		Secus		_		20	dela	7.4			THIS COC, THE CLIENT		
H = N6 ₂ S ₂ O ₃ N/E = Zn Ag/NsOH Q = Other	D = BOD Bottle	SELVRE STORAGE	12/30/24	1522	9n	as Rock. & C				The second secon				HAS READ AND AGREE TO BE BOUND BY ALPH TERMS & CONDITIONS	IA'S		
		Kurd R. A.	12324 18131		E. C.				12:31:24 1				O Con common side 1				
Form No. 01-25 HC (nev. 3	IO-Sept-2013)				0100	1 (14	111	4			12	.:31	74	T			